

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

COURSE OUTOMES (R17) MAPPING WITH POS AND PSOS

I SEMESTER (I BTECH -I SEM)

17FE01	Professional Communication-I	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
	Use English vocabulary &															
	grammar effectively while	-	-	-	2	-	-	-	-	3	3	2	-	-	-	-
CO1	speaking and writing.															
	Comprehend the given texts and															
	communicate confidently in	-	1	-	2	-	1	-	-	3	3	2	-	-	-	-
CO2	formal and informal contexts.															
CO3	Draft E-mails& Memos	-	-	-	2	-	-	-	-	3	3	2	-	-	-	-
	Understand the written and	_	1	_	2	_	1	_	_	3	3	2	_	_	_	_
CO4	spoken information thoroughly.						-									
CO5	Face interviews with confidence.	-	-	-	2	-	-	-	-	3	3	2	-	-	-	-
	Average value of CO	-	1.00	-	2.00	-	1.00	-	-	3.00	3.00	2.00	-	-	-	-
	Differential equations and	D04	DOO	DOG	DO 4	D0=	DO.	D0=	DOO	DOO	D040	D044	D040	DC04	DCOO	DCOO
17FE04	Linear Algebra	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
	Apply first order and first-degree															
	differential equations to find															
	Orthogonal trajectories and to	3	2	-	1	-	-	-	-	-	-	1	-	-	-	-
	calculate current flow in a simple															
CO1	LCR circuit.															
	Discriminate among the															
	structure and procedure of															
	solving a higher order differential	3	2	_	1	_	_	_	_	_	_	1	_	_	_	_
	equation with constant				1							1				
	coefficients and variable															
CO2	coefficients.															
	Developing continuous functions															
	as an infinite series and compute	3	2	_	1	_	_	_	_	_	_	1	_	_	_	_
	the Jacobian to determine the		_									_				
CO3	functional dependence.															

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO4	Distinguish among the pros and cons between the Row operation methods and Iterative methods in solving system of linear equations.	3	2	-	-	-	-	-	-	-	-	1	-	-	-	-
C05	Compute the Eigen values and Eigen vectors and powers, Inverse of a square matrix through Cayley – Hamilton theorem	3	2	-	-	-	-	-	-	-	-	1	-	-	-	-
	Average value of CO	3.00	2.00	-	1.00	-	-	-	-	-	-	1.00	-	-	-	-
17FE13	ENGINEERING PHYSICS	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO 1	Define the nature of Interference and Diffraction.	1	2	-	-	-	-	-	-	-	-	-	2	-	-	-
CO 2	Describe the polarization and LASER, types of lasers and their applications.	3	1	-	-	-	-	-	-	-	-	-	2	-	-	-
CO 3	Analyze the dual nature of matter waves and the crystal structures.	1	3	-	-	-	1	-	-	-	1	ı	2	1	-	-
CO 4	Identify the different types of magnetic materials and their applications.	2	3	-	-	-	-	-	-	-	-	-	2	-	-	-
CO 5	Propose the different superconducting materials	2	1	-	-	-	-	-	_	-	-	-	2	-	-	-
	Average value of CO	1.80	2.00	-	-	-	-	-	-	-	-	-	2.00	-	-	-
17CI01	COMPUTER PROGRAMMING	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	Identify basic elements of C programming structures like datatypes, expressions, control statements, various I/O functions and Evaluation of simple mathematical problems using control structures.	2	-	2	-	-	-	-	-	-	-	-	-	-	-	-
CO2	Implementation of derived data types like arrays, strings and various operations.	2	2	3	-	-	-	-	-	-	-	-	-	-	-	-

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO3	Understanding of memory management using pointers and designing of modular programming.	1	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO4	Construct user defined structures and implements various applications.	-	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO5	Create text & binary type files and understanding of various file I/O operations.	-	2	3	-	-	-	-	-	-	-	-	-	-	-	-
	Average value of CO	1.67	2.00	2.80	-	-	-	-	-	-	-	-	-	-	-	-
17CE01	Building Materials and Construction	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	Identify suitability of stones and bricks as building materials	2	-	-	-	3	3	3	2	-	2	2	-	2	1	2
CO2	Recognize the importance of lime and cement as building materials	2	-	_	-	3	3	3	2	-	2	2	-	2	1	2
C03	Make out the appropriate masonry and mortar to be used for building construction	2	-	-	-	3	3	3	2	-	2	2	-	2	1	2
CO4	Pick up the appropriate building components for comfortable construction	2	-	-	-	3	3	3	2	-	2	2	-	2	1	2
CO5	Identify the appropriate type of finishing techniques to be used in buildings	2	-	-	-	3	3	3	2	-	2	2	-	2	1	2
	Average value of CO	2.00	-	-	-	3.00	3.00	3.00	2.00	-	2.00	2.00	-	2.00	1.00	2.00
17FE60	ENGLISH COMMUNICATION SKILLS LAB	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Articulate English with good pronunciation.	-	-	-	3	-	-	ı	-	3	3	2	-	-	-	-
CO2	Manage skilfully through group discussions.	-	-	-	3	-	-	-	-	3	3	2	-	-	-	-
CO3	Communicate with the people effectively.	-	-	-	3	-	-	-	-	3	3	2	-	-	-	-
CO4	Collect and interpret data aptly.	-	-	-	3	-	-	-	-	3	3	2	-	-	-	-

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

	Average value of CO	-	-	-	3.00	-	-	-	-	3.00	3.00	-	-	-	-	-
17FE63	ENGINEERING PHYSICS LAB	PO1	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	Find the wave length of the Laser light source and width of single slit by forming diffraction pattern	3	3	3	2	-	-	-	-	3	-	3	-	-	-	-
CO2	Estimate the Radius of curvature of Plano convex lens by forming Newton's rings	3	3	2	2	-	-	-	-	3	-	3	-	-	-	-
CO3	Analyze the characteristics of different Diodes.	3	3	2	2	-	-	-	-	3	-	3	-	-	-	-
CO4	Determine the energy band gap of a semi-conductor Diode.	3	3	2	2	-	-	-	-	3	-	3	-	-	-	-
	Average value of CO	3.00	3.00	2.25	2.00	-	-	-	-	3.00	-	3.00	-	-	-	-
17CI60	COMPUTER PROGRAMMING LAB	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Plan solution for a problem and writing a program by understanding the various data types and the conditional statements	2	3	-	-	-	-	-	-	-	2	2	-	1	-	-
CO2	Plan a solution for a problem and writing a program by understanding repetive statements i.e., loops and arrays with different dimensions	2	3	-	-	-	-	-	-	-	2	2	-	1	-	-
CO3	Plan a solution for a problem and writing a program by understanding how to access the address locations of a variables using pointers and how the problem can be divided into sub functions to reduce the complexity	2	3	-	-	-	-	-	-	-	2	2	-	1	-	-

				-,	-,,		,					,				
CO4	Plan a solution for a problem and writing a program by understanding the structures and unions and to access the data from files	2	3	-	-	-	-	-	-	-	2	2	-	1	-	-
	Average value of CO	2.00	3.00	-	-	-	-	-	-	-	2.00	2.00	-	1.00	-	-
17ME60	ENGINEERING WORKSHOP	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Model and Develop various basic prototypes in the carpentry trade	3	3	2	2	-	-	-	-	3	-	-	3	-	-	-
CO2	Develop various basic prototypes in the trade of Welding	3	3	2	2	-	-	-	-	3	-	-	3	-	-	-
CO3	Develop various basic prototypes in the trade of Tin smithy	3	3	-	-	-	-	-	-	3	-	-	3	-	-	-
004	Understand various basic House Wiring concepts and implement them in simple electrical	3	3	-	-	-	-	-	-	3	-	-	3	-	-	-
CO4	connections Average value of CO	3.00	3.00	2.00	2.00					3.00			3.00	_		
	Average value of Co	3.00	3.00	1		CTED (1	BTECH	-II CEM) - 1	3.00	_		3.00	_	_	_
	PROFESSIONAL				II SEMIE	J KILK (I	DIECH	-II SEM) 				1		1	
17FE02	COMMUNICATION - II	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	Use appropriate vocabulary to interpret data thoroughly and to write reports effectively.	-	1	-	1	-	1	-	-	3	3	2	-	-	-	-
CO2	Face any situation with confidence and voice opinions/decisions assertively.	-	1	-	1	-	1	-	-	3	3	2	-	-	-	-
CO3	Use English Language effectively in spoken and written forms.	-	1	-	1	-	1	-	-	3	3	2	-	-	-	-
CO4	Work effectively in teams for better result.	-	1	-	1	-	1	-	-	3	3	2	-	-	-	-
C05	Communicate effectively using verbal and non-verbal dimensions aptly.	-	1	-	1	-	1	-	-	3	3	2	-	-	-	-
	Average value of CO	-	1.00	-	1.00	-	1.00	-	-	3.00	3.00	2.00	-	-	-	-

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

17FE06	TRANSFORMATION TECHNIQUES & VECTOR CALCULUS	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
C01	Apply the concepts of Laplace Transforms to solve ordinary differential equations.	3	2	-	1	-	-	-	-	-	1	-	1	-	-	-
CO2	Apply Z - Transforms to solve difference equations	3	2	-	1	-	-	-	-	-	-	-	1	-	-	-
CO3	Discriminate among Cartesian, Polar and Spherical coordinates in multiple integrals and their respective applications to areas and volumes	3	2	-	1	-	-	-	-	-	-	-	1	-	-	-
CO4	Evaluate the directional derivative, divergence and angular velocity of a vector function.	3	2	-	1	-	-	-	-	-	-	-	1	-	-	-
C05	Apply Vector Integration for curves, surfaces and volumes and relationship among themselves.	3	2	-	1	-	-	-	-	-	-	-	1	-	-	-
	Average value of CO	3.00	2.00	-	1.00	-	-	-	-	-		-	1.00	-	-	-
17FE14	APPLIED CHEMISTRY	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Analyze the quality of water and its maintenance for industrial purposes.	3	3	-	2		2	2	-	-	-	-	-	-	-	-
CO2	Analyze issues related to fuels, composition, their manufacture and acknowledge the important aspects of bio, nuclear and rocket fuels.	3	2	2	-		2	2	-	-	-	-	-	-	-	-
CO3	Apply the working principles of electrodes and batteries.	3	3	3	2	2	2	2			-	-	-	-	-	-
CO4	Apply the principles of corrosion in order to maintain various equipments more effectively.	3	3	3	2	2	2	2	-	-	-	-	-	-	-	-

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

	Identify the important															
	applications of engineering	3	3	3	2	2	2	2	_	_	_	_	_	-	_	_
	materials like plastics, rubbers				_	_	_	_								
C05	and lubricants.	0.00	0.00	0.55				0.00								
1=0=00	Average value of CO	3.00	2.80	2.75	-	-	-	2.00	-	-	-	-	-	-	-	-
17CE02	Applied Mechanics	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
	Acquire the knowledge of															
	analyzing force and couple	3	3	-	-	-	3	-	-	-	-	1	-	3	-	1
CO1	systems with regards to practical applications															
COI	Analyze and solve the															
	engineering problems for															
	different types of forces acting on	3	3	_	_	_	3	-	_	_	_	1	_	3	_	1
	rigid bodies in equilibrium															
CO2	conditions															
	Solve the problems associated															
	with frictional forces in different	3	3	-	-	-	3	-	-	-	-	1	-	3	-	1
CO3	applications															
	Locate centroid and determine													•		
604	moment of inertia for composite	3	3	-	-	-	3	-	-	-	-	1	-	3	-	1
CO4	areas and various cross sections															
	Acquire the knowledge to deal with kinematic analysis of															
	particle both in translation and	3	3	-	-	-	3	-	-	-	-	1	-	3	-	1
CO5	projectile motions															
	Average value of CO	3.00	3.00	-	-	-	3.00	-	-	-	-	1.00	-	3.00	-	1.00
17CE03	Surveying	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
	Apply the basic Principles in															
	surveying for conducting Chain	1	1	2	2	-	3	2	2	1	2	3	-	1	2	3
C01	and Compass survey															
	Generate the Elevations and															
602	Contours of Different Points in	2	1	2	3	2	2	2	2	1	2	3	-	2	1	3
CO2	the Field	 		-												
CO3	Compute the Area and Volume of a Given Field	1	1	2	2	3	3	2	2	1	2	3	-	1	3	2
LU3	a Giveli Fleiu	l .	l	l .	<u>l</u>			l	l]			

		22			_											
CO4	Generalize the Usage of Theodolite and Tacheometry in Civil Engineering Aspects	3	1	2	3	2	3	2	2	1	2	3	-	2	1	3
C05	Evaluate the Requirements for Setting the Curves In Civil Engineering Applications	1	1	2	2	3	3	2	2	1	2	3	-	1	2	3
	Average value of CO	1.60	1.00	2.00	2.40	2.50	2.80	2.00	2.00	1.00	2.00	3.00	-	1.40	1.80	2.80
17FE64	APPLIED CHEMISTRY LAB	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO 1	Assess quality of water based on the procedures given.	3	3	-	2	-	-	-	-	2	-	-	-	-	-	-
CO 2	Distinguish different types of titrations in volumetric analysis after performing the experiments listed in the syllabus.	2	3	-	2	-	-	-	-	2	1	-	-	-	-	-
CO 3	Acquire practical knowledge related to preparation of polymers.	3	2	-	2	-	-	-	-	2	-	-	-	-	-	-
CO 4	Exhibit skills in performing experiments based on theoretical fundamentals.	2	2	-	2	-	-	-	-	2	1	-	-	-	-	-
	Average value of CO	2.50	2.50	-	2.00	-	-	-	-	2.00	1.00	-	-	-	-	-
17CE60	Computer based Engineering Drawing Lab	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Draw simple objects using functional tools in AutoCAD	3	-	1	2	1	1	2	1	-	1	2	-	3	2	-
CO2	Develop and draw the positions and views of points, lines, planes and solids using AutoCAD	3	-	1	2	-	-	2	-	-	1	2	-	3	2	-
CO3	Develop and draw the orthographic and isometric projections of simple objects using Auto-CAD	3	-	1	2	-	-	2	-	-	1	2	-	3	2	-
CO4	Develop and draw the projections of the solids by developing the surfaces using AutoCAD	3	-	1	2	-	-	2	-	-	1	2	-	3	2	-

	Average value of CO	3.00	-	1.00	2.00	-	-	2.00	-	-	1.00	2.00	-	3.00	2.00	-
17CE61	Civil Engineering Drafting Techniques Lab	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	Draw simple objects based on principles of geometry	2	2	1	1	-	-	-	-	1	-	1	-	2	2	-
CO2	Develop the projections of an object based on the angles of projection	2	2	1	1	-	-	-	-	1	-	-	-	2	2	-
C03	Draft simple objects using ArchiCAD software	2	2	3	2	-	-	-	-	1	-	-	-	2	2	-
CO4	Develop, draw and edit simple objects related to civil engineering applications using ArchiCAD	2	2	3	2	-	-	-	-	1	-	-	-	2	-	-
	Average value of CO	2.00	2.00	2.00	1.50	-	-	-	-	1.00	-	-	-	2.00	2.00	-
17CE62	Survey field work Lab	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Compute linear and angular measurements in the field using chain and compass	3	2	2	3	-	-	-	-	-	-	2	-	3	2	-
CO2	Plot a given area using plane table in the field	3	3	2	3	-	-	-	-	-	-	2	-	3	2	-
C03	Determine the elevations of different points in the field	3	3	2	3	-	-	-	-	-	-	2	-	3	2	-
	Average value of CO	3.00	2.67	2.00	3.00	-	-	-	-	-	-	2.00	-	3.00	2.00	-
		_]	III SEMI	ESTER (II BTECI	H -I SEM	()		r		1	1	r	
17FE07	Numerical Methods & Fourier Analysis	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1	Compare the rate of accuracy between various methods in approximating the root of and equation and Distinguish among the criteria of selection and procedures of various Numerical Integration Rules.	3	2	-	2	-	-	-	-	-	-	1	-	-	-	-

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO2	Estimate the best fit polynomial for the given tabulated data using the methods of Newton's Interpolation formulae and Lagrange's Interpolation.	3	2	-	2	-	-	-	-	-	-	1	-	-	-	-
CO3	Apply various Numerical methods in solving and initial value problem involving and ordinary differential equation.	3	2	-	2	-	-	-	-	-	-	1	-	-	-	-
CO4	Estimate the unknown dependent variables using curve fitting methods.	3	2	-	2	-	-	-	-	-	-	1	-	-	-	-
C05	Generate the single valued functions in the form of Fourier series and obtain the Fourier Transforms	3	2	-	-	-	-	-	-	-	-	1	-	-	-	-
	Average value of CO	3.00	2.00	-	2.00	-	-	-	-	-	-	1.00	-	-	-	-
	Fundamentals of Electrical															
17EE51	Engineering	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
17EE51		PO1 3	PO2 2	PO3	PO4	P05 -	P06 -	P07 -	P08 -	P09 -	P010 -	P011 -	P012 -	PSO1	PSO2	PSO3
	Engineering Analyze the different types of					P05 -	P06 -		P08 -	P09 -						
CO1	Engineering Analyze the different types of electical networks Understand the working of AC machines and their applications Use the techniques to measure efficiency and regulation of AC machines	3		1		- - -	P06 - -		- -	- - -						
CO1	Engineering Analyze the different types of electical networks Understand the working of AC machines and their applications Use the techniques to measure efficiency and regulation of AC	3 2 2 2	3	1 2 - 2	-		P06									
CO1 CO2 CO3	Engineering Analyze the different types of electical networks Understand the working of AC machines and their applications Use the techniques to measure efficiency and regulation of AC machines Demonstrate the characteristics of different electronic devices and their applications Average value of CO	3 2 2 2 2 2.25	2 - 3 1 2.00	1 2 - 2 1.67	1 - - 1.00	-	- - - -			-		-	-	-	-	
CO2 CO3	Engineering Analyze the different types of electical networks Understand the working of AC machines and their applications Use the techniques to measure efficiency and regulation of AC machines Demonstrate the characteristics of different electronic devices and their applications	3 2 2 2	3	1 2 - 2	-	-		-	-	-		-	-	-	-	PSO3

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO2	Analyze the various beams subjected to different loads using shear force and bending moment diagrams	2	2	1	-	-	-	-	-	-	-	-	2	3	-	1
CO3	Compute the shear and bending stress distribution in several members of different sections	2	2	1	-	-	-	-	-	-	-	-	2	3	-	1
CO4	Compute the twisting moment and shear stress induced in shafts and evaluate the pull component in springs	2	2	1	-	-	-	-	-	-	-	-	2	3	-	1
CO5	Interpret the stresses in thick and thin cylindrical and spherical shells under different loads and directions and member forces in a truss	2	2	1	-	-	-	-	-	-	-	-	2	3	-	1
	Average value of CO	2.00	2.00	1.00	-	-	1	-	-	-	-	-	2.00	3.00	-	1.00
17CE05	Engineering Geology	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Demonstrate the importance of geological principles	1	-	-	-	-	-	-	-	-	-	-	1	1	-	-
CO2	Differentiate minerals based on physical properties	2	-	-	-	-	-	-	-	-	-	-	1	1	-	-
CO3	Distinguish various types of rocks based on their characteristic features	1	-	-	-	-	ı	-	-	-	-	-	1	1	-	-
CO4	Interpret geological structures	3	-	-	-	-	-	-	-	-	-	-	1	1	-	-
CO5	Judge geophysical and geological considerations	1	-	-	-	-	1	-	-	-	-	-	1	1	-	-
	Average value of CO	1.60	-	-	-	-	-	-	-	-	-	-	1.00	1.00	-	-
17CE06	Mechanics of Fluids	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
	Exposed to basic principles of fluid properties, pressure															

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO2	Apply the principles of conservation of mass for fluid flow problems	3	3	-	-	-	-	-	-	-	-	-	1	3	-	-
C03	Apply the momentum and energy equation to fluid mechanics and laminar flow problems and flow measurement applications	3	3	-	-	-	-	-	-	-	-	-	1	3	-	-
CO4	Compute the energy losses in pipes, flow parameters in laminar flow conditions and exposed to the basics of boundary layer theory	3	3	-	-	-	-	-	-	-	-	-	1	3	-	-
CO5	Apply dimensional analysis as a tool in solving problems in the field of fluid mechanics and apply the laws of similarity	3	2	-	-	-	-	-	-	-	-	-	1	3	-	-
	Average value of CO	3.00	2.80	-	-	-	-	-	-	-	-	-	1.00	3.00	-	-
17CE07	Concrete Technology	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
C01	State the concept of concrete and the component materials	1	-	-	-	-	-	-	-	-	1	-	1	-		1
CO2	Assess the required properties of concrete	1	-	-	-	-	-	-	-	-	-	-	1	-		1
CO3	Know the importance of various tests to determine strength of concrete	1	-	-	-	-	-	-	-	-	-	-	1	-	2	1
CO4	Comprehend the various types of special concrete	1	-	-	-	-	-	-	-	-	ı	-	1	-	2	1
CO5	Compute the mix proportions for design as per IS code	2	2	3	-	-	-	-	-	-	ı	-	1	3		2
	Average value of CO	1.20	2.00	3.00	-	-	-	-	-	-	-	-	1.00	3.00	2.00	1.20
17CE63	Engineering Geology Lab	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Demonstrate the importance of geological principles	1	-	-	-	-	-	-	-	-	-	-	1	-	1	-
CO2	Differentiate minerals based on physical properties	2	-	-	-	-	-	-	-	1	1	-	1	-	1	-

	District C			_,	-,y						Frauesn	,		1	I	
	Distinguish various types of	_														
	rocks based on their	2	-	-	-	-	-	-	-	1	1	-	1	-	1	-
CO3	characteristic features															
CO4	Interpret geological structures	-	2	-	-	3	-	-	-	1	1	-	1	-	1	-
	Average value of CO	1.67	2.00	-	-	3.00	-	-	-	1.00	1.00	-	1.00	-	1.00	-
17CE64	Solid mechanics Lab	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
	Perform necessary experiments															
	to determine the mechanical	_	_			_				4	4		4	_		
	properties of materials under	3	2	-	-	2	-	-	-	1	1	-	1	3	-	2
CO1	different loading conditions															
	Analyze the experimental results															
	for assessment of the strength of	3	2	_	_		-	_	_	1	1	_	1	3	-	2
CO2	the given material										_		_			
	Average value of CO	3.00	2.00	-	-	2.00	-	-	-	1.00	1.00	-	1.00	3.00	-	2.00
	Advanced Survey field work															
17CE65	lab	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
	Obtain angular measurements in	3	1			1				1	1		1		2	
CO1	the field using theodolite	3	1	-	-	1	-	-	-	1	1	•	1	-	2	-
	Determine the elevations of															
	different points in the field using	3	1	-	-	3	-	-	-	1	1	-	1	-	3	-
CO2	theodolite and total stations															
	Operate the total station to take															
	out the measurements for	2	1	-	-	3	-	-	-	1	1	-	1	-	3	-
CO3	desired objectives															
	Establish the setting out of works		4										_		-	
CO4	in the field	2	1	-	-		-	-	-	1	1	-	1	-	2	-
	Average value of CO	2.50	1.00	-	-	2.33	-	-	-	1.00	1.00	-	1.00	-	2.50	-
	, -	1	ı	I	V SEME	STER (I	I BTECH	I -II SEM	1)	ı	L			1	L	
17FE03	Environmental Science	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
	Identify environmental problems															
	arising due to engineering and															
	technological activities that help	3	3	_	_	_	2	_	_	_	_	1	-	_	_	_
	to be the part of sustainable						_					_				
CO1	solutions															
001	JOIGGOILJ	l	1	1	1	1	l .		1	l .	l			1	l	

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO2	Evaluate local, regional and global environmental issues related to resources and their sustainable management.	3	-	-	-	-	2	-	-	-	-	1	-	-	-	-
CO3	Identify the importance of ecosystem and biodiversity for maintaining ecological balance.	3	3	2	-	-	2	-	-	-	-	1	-	-	-	-
CO4	Acknowledge and prevent the problems related to pollution of air, water and soil.	3	3	-	-	-	2	-	-	-	-	1	-	-	-	-
CO5	Interpret the significance of implementing environmental laws and abatement devices for environmental management.	3	-	2	-	-	-	2	-	-	-	1	-	-	-	-
	Average value of CO	3.00	3.00	2.00	-	-	2.00	2.00	-	-	-	1.00	-	-	-	-
17FE08	Probability and Statistics	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Predict various probabilistic situations based on the laws of probability and random variables.	2	3	1	3	-	-	-	-	-	-	-	1	-	-	1
CO2	Distinguish among the criteria of selection and application of Binomial, Poisson, Normal and Exponential distributions.	2	3	1	3	-	-	-	-	-	-	-	1	-	-	1
CO3	Estimate the point and interval estimators of mean and proportion for the given Sample data.	2	3	1	3	-	-	-	-	-	-	-	1	-	-	1
CO4	Apply various sample tests like Z- test, t-test, F-test and χ2-test for decision making regarding the population based on sample data	2	3	1	3	-	-	-	-	-	-	-	1	-	-	1
CO5	Estimate the level of correlation, the linear relationship using the regression lines for the given bivariate data.	2	3	1	3	-	-	-	-	-	-	-	1	-	-	1

	Average value of CO	2.00	3.00	1.00	3.00	-	-	-	-	-	-	-	1.00	-	-	1.00
17CE08	Strength of Materials-2	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Analyze the compound stresses and failure theories	3	2	1	-	-	-	-	-	-	-	-	1	3	-	1
CO2	Analyze and evaluate the stresses in columns	2	2	1	-	-	ı	-	-	-	ı	-	1	3	-	1
CO3	Compute deflections in beams due to different loading conditions	3	2	1	-	-	ı	-	-	-	ı	-	1	3	-	2
CO4	Analyze the fixed beams subjected to different loading three moment equation method	2	2	1	-	-	-	-	-	-	-	-	1	3	-	2
CO5	Compute stress in unsymmetrical bending and shear centre for a different sections	3	2	1	-	-	1	-	-	-	ı	-	1	3	-	1
	Average value of CO	2.60	2.00	1.00	-	-	-	-	-	-	-	-	1.00	3.00	-	1.40
17CE09	Hydraulics and Hydraulic Machinery Systems	PO1	P02	PO3	PO4	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1	Solve the open channel problems for uniform flows	3	2	2	-	ı	ı	ı	-	-	ı	ı	1	3	-	1
CO2	Analyze various forms of non- uniform flows and to estimate formation of hydraulic jump and subsequent energy losses	3	2	2	-	-	-	-	-	-	-	-	1	3	-	1
CO3	Determine the impact force and work done for different types of vanes	3	3	3	-	-	-	-	-	-	-	-	1	3	-	1
CO4	Analyze suitability of turbines for different types for different applications	2	1	1	-	-	-	-	-	-	1	-	1	2	-	1
C05	Identify the suitability of centrifugal and reciprocating pumps for different applications and calculate their efficiencies	2	1	1	-	-	-	-	-	-	-	-	1	2	-	1
	Average value of CO	2.60	1.80	1.80	-	-	-	-	-	-	-	-	1.00	2.60	-	1.00
17CE10	Structural Analysis -1	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

C01	Analyze conjugate beams	3	3	-	-	-	-	-	-	-	-	-	1	3	-	2
CO2	Analyze propped cantilevers, fixed beams	3	3	-	-	-	-	ı	1	-	1	-	1	3	-	2
CO3	Analyze continuous beams subjected to different loads	3	3	-	-	-	-	ı	1	-	1	-	1	3	-	2
C04	Perform calculations using slope deflection method for structural analysis	3	3	-	-	-	-	-	-	-	-	-	1	3	-	2
CO5	Analyse different structural components using Castigliano's theorem for indeterminate structures	3	3	-	-	-	-	-	-	-	-	-	1	3	-	2
	Average value of CO	3.00	3.00	-	-	-	-	-	-	-	-	-	1.00	3.00	-	2.00
17CE11	Geo Technical Engineering-1	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Compute and analyze different classifications and properties of soil	2	2	1	-	-	-	-	-	1	-	-	1	2	-	2
CO2	Determine consistency and compaction parameters of soils	1	2	1	-	-	-	-	-	-	-	-	1	2	-	2
CO3	Determine permeability and effective stresses in soil	2	2	2	-	-	-	ı	1	-	1	-	1	2	-	1
CO4	Analyze shear behavior of soils under different load/ drainage conditions	2	2	2	-	-	-	-	-	ı	-	-	1	2	-	2
C05	Determine the stress distribution in soils under different loading conditions and analyze consolidation properties of soils	3	3	2	-	-	-	-	-	-	-	-	1	2	-	2
	Average value of CO	2.00	2.20	1.60	-	-	-	-	-	-	-	-	1.00	2.00	-	1.80
17CE66	Fluid Mechanics Lab	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Develop knowledge on the fundamental principles of fluid flow	2	2	-	-	1	-	-	-	1	1	-	1	-	1	-

				, ,	, ,				,							
CO2	Apply the laws of conservation of mass, energy and momentum to solve practical problems in fluid mechanics	2	2	-	-	1	-	-	-	1	1	-	1	-	1	-
C03	Practically visualize the functioning and performance of hydraulic turbines and pumps	2	2	-	-	1	-	-	-	1	1	-	1	-	1	-
	Average value of CO	2.00	2.00	-	-	1.00	-	-	-	1.00	1.00	-	1.00	-	1.00	-
17CE67	Concrete Technology Lab	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	Find the properties of bricks and cement	2	-	-	-	1	-	-	-	1	1	-	1	-	1	1
CO2	Determine the properties of aggregates	2	-	-	-	1	-	-	-	1	1	-	1	-	1	1
CO3	Identify the properties of concrete	2	-	-	-	3	-	-	-	1	1	-	1	-	1	1
	Average value of CO	2.00	-	-	-	1.67	-	-	-	1.00	1.00	-	1.00	-	1.00	1.00
17CE68	Computer Aided Building Drawing Lab	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Sketch the different sign conventions used in building drawing	-	-	-	-	3	-	-	-	1	1	-	1	-	1	2
CO2	Draw different views of buildings with a suitable scale	-	-	-	-	3	-	-	-	1	1	-	1	-	1	2
CO3	Develop 3-D view of building & staircase	ı	-	-	-	3	ı	ı	-	1	1	ı	1	-	1	2
	Average value of CO	-	-	-	-	3.00	-	-	-	1.00	1.00	-	1.00	-	1.00	2.00
				,	V SEME	STER (I	I BTECI	H -I SEM)							
17CE12	STRUCTURAL ANALYSIS-2	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	Analyze the three-hinged and two-hinged arches	3	3	-	-		-		-	1	-	-	1	3	-	2
CO2	Estimate the impact of cables and suspension bridges on structures.	3	3	-	-	-	-	-	-		-	-	1	3	-	2
CO3	Assess the impact of moving loads on structures.	3	3	-	-	-	-	-	-	-	-	-	1	3	-	2

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO4	Draw influence lines for analysis purpose and analyse the continuous beams and portal frames	3	3	-	-	-	-	-	-	-	-	-	1	3	-	2
CO5	Describe the basics of stiffness and flexibility methods for structural loads analysis	3	3	-	-	-	-	-	-	-	-	-	1	3	1	2
000	Average value of CO	3.00	3.00	_	-	-	-	_	-	-	-	-	1.00	3.00	-	2.00
17CE13	DESIGN OF REINFORCED CONCRETE STRUCTURES-1	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Analyze and design the RCC structures using working stress methods.	2	2	3	-	-	-	-	-	-	-	-	1	3	-	1
CO2	Design the singly and doubly reinforced RC beams in limit state method	2	2	3	-	-	-	-	-	-	-	-	1	3	-	1
CO3	Illustrate the shear reinforcement for different elements of a building	2	2	3	-	-	-	-	-	-	-	-	1	3	-	1
CO4	Design the one way and two-way slabs with different end conditions	2	2	3	-	-	-	-	-	-	-	-	1	3	1	1
CO5	Design the columns subjected to axial load, uni-axial and bi-axial moments.	2	2	3	-	-	-	-	-	-	-	-	1	3	-	1
	Average value of CO	2.00	2.00	3.00	-	-	-	-	-	-	-	-	1.00	3.00	-	1.00
17CE14	HIGHWAY ENGINEERING	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	Discriminate the studies of highway planning, development, surveys and alignment.	1	-	-	-	-	-	-	-	-	-	-	1	1	-	1
CO2	Design the geometric elements of highway	2	3	2	-	-	-	-	-	-	-	-	1	2	-	1
CO3	Identify the suitability of appropriate highway materials based on their properties	2	3	-	-	-	-	-	-	-	-	-	1	1	-	1

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO4	Design the Flexible and Rigid pavement using IRC codes.	1	3	2	-	-	-	-	-	-	-	-	1	3	-	2
CO 5	Interpret the elements of traffic management.	1	1		-	-	-	-	-	-	-	-	1	2	-	1
	Average value of CO	1.40	2.50	2.00	-	-	-	-	-	-	-	-	1.00	1.80	-	1.20
17CE15	HYDROLOGY	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	Estimate the average rainfall over a basin and identify the various methods to determine the water losses	3	2	-	-	-	-	-	-	-	-	-	1	2	-	1
CO2	Compute direct run off from total rain fall.	3	2	-	-	-	-	-	-	-	-	-	1	2	-	1
CO3	Develop unit hydrograph and storm hydrograph	3	2	-	-	-	-	-	-	-	-	-	1	2	-	1
CO4	Assess the flood magnitude and carry out flood routing.	3	1	-	-	-	ı	-	-	-	-	ı	1	2	-	1
C05	Determine aquifer parameters and yield of wells.	3	2	-	-	-	ı	-	-	-	-	ı	1	2	-	1
	Average value of CO	3.00	1.80	-	-	-	-	-	-	-	-	-	1.00	2.00	-	1.00
						l .										
17CE18	CONSTRUCTION MANAGEMENT	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
17CE18 CO1		P01 -	PO2 -	PO3	P04 -	P05 -	P06 -	P07 -	P08	P09 -	P010 -	1	P012	PSO1 1	PSO2 -	2
	MANAGEMENT Identify the key aspects of		P02 - 1	P03		P05 -	P06 -	P07 -	P08 -	P09 -						
CO1	MANAGEMENT Identify the key aspects of Project Management	_	-	-	-	-	-	-	-	-	-	1	1	1	-	2
C01 C02	MANAGEMENT Identify the key aspects of Project Management Plan and schedule the project. Utilize both labour and materials	-	-	-	-	-	-	-	-	-	-	1 2	1 1	1 1	-	2 2
C01 C02 C03	MANAGEMENT Identify the key aspects of Project Management Plan and schedule the project. Utilize both labour and materials effectively. Perform detailed network analysis to complete project within schedule. Deal contracts and bidding processes.	-	1 -	- - - 2	-	-	-	-	-	-	-	1 2 1 2	1 1 1	1 1 1 3	-	2 2 2 2 2
C01 C02 C03	MANAGEMENT Identify the key aspects of Project Management Plan and schedule the project. Utilize both labour and materials effectively. Perform detailed network analysis to complete project within schedule. Deal contracts and bidding processes. Average value of CO	-	1 -		-	-	-		-	-	-	1 2 1 2	1 1 1	1 1 1 3	-	2 2 2 2
C01 C02 C03	MANAGEMENT Identify the key aspects of Project Management Plan and schedule the project. Utilize both labour and materials effectively. Perform detailed network analysis to complete project within schedule. Deal contracts and bidding processes.	-	- 1 - 3	- - - 2	-	-	-		-	-	-	1 2 1 2	1 1 1	1 1 1 3	-	2 2 2 2 2

	Determine and analyze the	3	_	3		_	2	_	_	_	_	2	_	2	3	3
CO2	properties of bitumen.	3		3		_		-	_	_	_		_	4	J	3
	Determine the suitability of															
	aggregates and bitumen for	3	-	3	-	-	2	-	-	-	-	2	-	2	3	3
CO3	pavement designs.															
	Average value of CO	3.00	-	3.00	-	-	2.00	-	-	-	-	2.00	-	2.00	3.00	3.00
	GEO TECHNICAL ENGINEERING	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
17CE70	LAB	101	102	103	104	103	100	107	100	109	1010	1011	1012	1301	1302	1303
	Determine the index and	2	_	_	_	2	_	_	_	1	1	_	1	_	2	2
CO1	engineering properties of soils										•				_	
	Perform field tests for soil	3	_	_	_	3	_	_	_	1	1	_	1	_	2	2
CO2	investigations.										-		_		_	_
	Apply field conditions for															
000	computing and analyzing the	2	2	-	-		-	-	-	1	1	-	1	-	2	2
CO3	experimental data.															
CO4	Analyze the results and infer the	2	-	-	-		-	-	-	1	1	-	1	-	2	2
CO4	validity of the results	2.25	2.00			2.50				1.00	1.00		1.00		2.00	2.00
450000	Average value of CO		2.00	-	- DO 4	2.50	- DO:	- DOF	-	1.00	1.00	- D044	1.00	- DC04	2.00	
17CE90	GREEN BUILDINGS	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	Categorize the benefits of a green building.	1	-	-	-	-	1	1	-	-	-	-	1	-	-	1
COI	Assess the impact of climate in															
CO2																
602	I the decign of a green hillding	1	-	-	-	-	1	1	-	-	-	-	1	-	-	1
	the design of a green building	1	-	-	-	-	1		-	-	-	-	1	-	-	1
CO3	Identify appropriate materials	1	-	-	-	-	1	1 2	-	-	-	-	1	-	-	1
CO3	Identify appropriate materials for constructing a green building		-	-	-	-				-					-	
CO3	Identify appropriate materials for constructing a green building Plan the various options for	1	-	-	-	-		2		-			1		-	1
	Identify appropriate materials for constructing a green building Plan the various options for energy and resource		-	-	-	-	1			-					-	
C03	Identify appropriate materials for constructing a green building Plan the various options for energy and resource conservation in a green building	1	-	-	-	-	1	2		-			1		-	1
	Identify appropriate materials for constructing a green building Plan the various options for energy and resource	1 2	-	-	-	-	1	2		-			1		-	1
	Identify appropriate materials for constructing a green building Plan the various options for energy and resource conservation in a green building Optimally use renewable energy	1	-	-	-		1	2					1		-	1
	Identify appropriate materials for constructing a green building Plan the various options for energy and resource conservation in a green building Optimally use renewable energy resources and Plan the building	1 2	-	-	-		1	2		-			1		-	1
CO4	Identify appropriate materials for constructing a green building Plan the various options for energy and resource conservation in a green building Optimally use renewable energy resources and Plan the building for best green building rating	1 2		-	-		1	2		-			1			1
CO4	Identify appropriate materials for constructing a green building Plan the various options for energy and resource conservation in a green building Optimally use renewable energy resources and Plan the building for best green building rating system	2		- - -	- - - - VI SEME:	- - - STER (II	1 1 1	2 2 3 1.80					1 1 1			1 1 1
CO4	Identify appropriate materials for constructing a green building Plan the various options for energy and resource conservation in a green building Optimally use renewable energy resources and Plan the building for best green building rating system	2	P02	V		- - - STER (II	1 1 1 1.00	2 2 3 1.80		- - - - P09			1 1 1		PS02	1 1 1

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO1	Identify the different structural steel elements and their connection system	2	2	3	-	-	-	-	-	-	-	-	1	3	-	3
CO2	Design the compression and tension members.	3	3	3	-	-	-	-	-	-	-	-	1	3	-	3
CO3	Analyse and design the beams.	3	3	3	-	-	-	-	-	-	-	-	1	3	-	3
CO4	Design the column bases and built-up columns.	3	3	3	-	-	-	-	-	-	-	-	1	3	-	3
CO5	Design the roof trusses.	3	3	3	-	-	-	-	-	-	-	-	1	3	-	3
	Average value of CO	2.80	2.80	3.00	-	-	-	-	-	-	-	-	1.00	3.00	-	3.00
17CE21	IRRIGATION AND WATER RESOURCES ENGINEERING	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1	Analyze the stability of Gravity dams	3	3	2	-	-	-	-	-	-	-	-	1	2	-	2
CO2	Design the impervious floors for Diversion Head Works.	2	2	2	-	-	-	-	-	-	-	-	1	2	-	2
CO3	Estimate Irrigation Water Requirements.	3	2	2	-	-	-	1	-	-	-	-	1	2	-	2
CO4	Design the erodible and non- erodible canals	2	2	3	-	-	-	-	-	-	-	-	1	2	-	2
CO5	Interpret the design principles of Cross Drainage Works	2	1		-	-	-	-	-	-	ı	-	1	2	-	2
	Average value of CO	2.40	2.00	2.25	-	-	-	1.00	-	-	ı	-	1.00	2.00	-	2.00
17CE22	WATER AND WASTE WATER ENGINEERING	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Estimate the water demand for the community and assess the significance of water quality parameters	2	1	-	-	-	-	-	-	-	-	-	1	1	-	1
CO2	Design the sedimentation-based water treatment systems	3	2	3	-	-	-	-	-	-	ı	-	1	3	-	2
CO3	Design the filtration and disinfection-based water treatment systems	3	2	3	-	-	-	-	-	-	-	-	1	3	-	2

		7.04		, ,					,							
CO4	Interpret the importance of sewage quality parameters and design the primary treatment units	3	2	3	-	-	-	-	-	-	-	-	1	3	-	2
C05	Design the secondary treatment and sludge handling aspects of sewage treatment plant	3	2	3	-	-	-	-	-	-	-	-	1	3	-	2
	Average value of CO	2.80	1.80	3.00	-	-	-	-	-	-	-	-	1.00	2.60	-	1.80
17CE23	GEO TECHNICAL ENGINEERING-2	P01	PO2	РО3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
C01	Interpret the principles of soil exploration.	3	1	-	-	-	-	-	-	-	-	-	1	2	-	2
CO2	Design different types of foundations.	3	2	3	-	-	-	ı	-	-	-	-	1	2	-	2
CO3	Determine safe bearing capacity for design of buildings.	3	2	-	-	-	-	ı	-	-	-	-	1	3	-	2
CO4	Design different types of retaining walls.	3	2	3	-	-	-	ı	-	-	-	-	1	2	-	2
C05	Design the special foundations and perform stability analysis of slopes.	3	1	2	-	-	-	-	-	-	-	-	1	2	-	2
	Average value of CO	3.00	1.60	2.67	-	-	-	-	-	-	-	-	1.00	2.20	-	2.00
17CE25	RAILWAYS, AIRPORT PLANNING AND HARBOUR ENGINEERING	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Illustrate the rail network development and railway planning in India.	1	-	-	-	-	-	-	-	-	-	-	1	1	-	1
CO2	Analyse different technical aspects of railway junctions.	1	-	-	-	-	-	-	-	-	-	-	1	1	-	1
C03	Characterise the concepts of railway Interlocking and signalling systems.	1	-	-	-	-	-	-	-	-	-	-	1	1	-	1
C04	Identify the technical issues related to planning and design of airports	1	-	-	-	-	-	-	-	-	-	-	1	1	-	1

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

C05	Describe the technical components of harbour.	1	-	-	-	-	-	-	-	-	-	-	1	1	-	1
	Average value of CO	1.00	-	-	-	-	-	-	-	-	-	-	1.00	1.00	-	1.00
17CE26	CONSTRUCTION TECHNIQUES AND EQUIPMENT PLANNING	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Identify the best construction equipment for site work and heavy civil projects	1	-	-	-	-	ı	-	-	-	-	-	1	1	-	1
CO2	Choose the construction equipment based on their capabilities	2	-	-	-	-	1	-	-	-	-	-	1	1	-	1
CO3	Categorize the different types of cranes for field use	1	-	-	-	-	-	-	-	-	-	-	1	1	-	1
CO4	Classify the pile driving equipment for construction purpose	2	-	-	-	-	ı	-	-	-	-	-	1	1	-	1
C05	Plan the form work and usage of miscellaneous equipment.	2	-	-	-	-	-	-	-	-	-	-	1	1	-	1
	Average value of CO	1.60	-	-	-	-	-	-	-	-	-	-	1.00	1.00	-	1.00
17CE71	ENVIRONMENTAL ENGINEERING LAB	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
CO1	Perform the different laboratory techniques for examining the water quality parameters.	3	-	-	-	3	-	-	-	1	1	-	1	-	2	1
CO2	Perform the different laboratory techniques for examining the wastewater quality parameters.	3	-	-	-	3	-	-	-	1	1	-	1	-	2	1
CO3	Analyze the laboratory data and comment with respect to permissible limits and field conditions.	1	2	-	-	1	-	2	-	1	1	-	1	-	1	1
	Average value of CO	2.33	2.00	-	-	2.33		2.00	-	1.00	1.00	-	1.00	-	1.67	1.00
17CE72	COMPUTER AIDED ANALYSIS AND DESIGN LAB	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3

		100		-,	,,						Frauesn	,				
CO1	Apply structural analysis software to analyze and design the beams, 2D and 3D frames.	-	2	3	-	3	-	-	-	1	1	-	1	2	-	2
CO2	Design of retaining walls and foundations using STAAD Pro	-	2	3	-	3	-	-	-	1	1	-	1	2	-	2
C03	Analyze, design and draw the details of RCC and steel structural elements.	-	2	3	-	3	-	-	-	1	1	-	1	2	-	2
	Average value of CO	-	2.00	3.00	-	3.00	-	-	-	1.00	1.00	-	1.00	2.00	-	2.00
17CE91	LOW COST AND ECO-FRIENDLY BUILDING TECHNOLOGY	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Select appropriate traditional materials for construction	1	1	-	-	-	-	1	-	-	-	-	1	1	-	1
CO2	Select appropriate eco-friendly materials for construction	1	1	-	-	-	-	1	-	-	-	-	1	1	-	1
C03	Analyze the eco-friendly technologies for low cost construction	1	2	-	-	-	-	2	-	-	-	-	1	1	-	1
CO4	Describe prefabrication techniques and assess the wind effects on low rise buildings	1	1	-	-	-	-	1	-	-	-	-	1	1	-	1
C05	Categorize the approaches followed in disaster prone areas.	1	1	-	-	-	-	1	-	1	-	-	1	1	-	1
	Average value of CO	1.00	1.20	-	-	-	-	1.20	-	-	-	-	1.00	1.00	-	1.00
	-	•	•	V	II SEMI	ESTER (IV BTEC	H -I SEN	n				•	•		
	ECTIMATION & OHANTITY								-, 							
17CE28	ESTIMATION & QUANTITY SURVEYING	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	Estimate the quantities for various types of structures.	2	2	-	-	-	-	-	1	-	-	-	2	2	-	2
CO2	Calculate the quantities of different items in buildings and roads.	2	2	-	-	-	-	-	1	-	-	-	2	2	-	2
C03	Compute the quantity estimate for canals.	2	2	-	-	-	-	-	1	-	-	-	2	2	-	2

C04	Prepare and write specifications and rate analysis.	1	-	-	-	-	-	-	2	-	-	-	2	1	-	2
001	Perform valuation of the															
	property as per the prevailing	1	-	-	-	-	-	-	2	-	-	-	2	1	-	2
CO5	regulations.	1.10	2.22						1.10				2.00	1.10		0.00
	Average value of CO	1.60	2.00	-	-	-	-	-	1.40	-	-	-	2.00	1.60	-	2.00
17CE29	REMOTE SENSING AND GIS APPLICATIONS	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Interpret the concepts of Photogrammetry and its applications such as determination of heights of objects on terrain.	2	-	-	-	-	-	-	-	-	-	-	1	1	-	1
COI	Illustrate the Electromagnetic															
CO2	spectrum and utilize the energy interactions of EMR with atmosphere and earth surface features for GIS data generation	3	-	-	-	-	-	-	-	-	-	-	1	1	-	1
CO3	Analyze the methods of map projections and understand coordinate systems on GIS Software packages to produce high resolution thematic maps.	2	-	-	-	-	-	-	-	-	-	-	1	1	-	1
CO4	Apply the concepts of vector and raster data model for representation of topological earth features and its importance.	2	-	-	-	-	-	-	-	-	-	-	1	1	-	1
C05	Apply the RS & GIS techniques for solving civil engineering applications	2	-	-	-	-	-	-	-	-	-	-	1	1	-	1
	Average value of CO	2.20	-	-	-	-	-	-	-	-	-	-	1.00	1.00	-	1.00
17CE30	DESIGN OF REINFORCED CONCRETE STRUCTURES-2	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	Design the footings	3	3	3	-	-	-	-	-	-	-	-	2	3	-	2
CO2	Design the piles	3	3	3	-	-	-	-	-	-	-	-	2	3	-	2

(AUTONOMOUS)
Accredited by NAAC with 'A' Grade, ISO 9001:2015 Certified Institution

CO3	Design different slabs	3	3	3	_	_	_	_	_	_	_	-	2	3	_	2
CO4	Design the stair cases	3	3	3	-	-	-	-	-	-	-	-	2	3	-	2
CO5	Design cantilever type retaining walls	3	3	3	-	-	-	-	-	-	-	-	2	3	-	2
	Average value of CO	3.00	3.00	3.00	-	-	-	-	-	-	-	-	2.00	3.00	-	2.00
17CE31	PRESTRESSED CONCRETE	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Identify the different methods of pre-stressing.	1	-	-	-	-	-	-	-	-	-	-	1	1	-	1
CO2	Compute the effective pre-stress including the short- and long-term losses.	1	-	-	-	-	-	-	-	-	-	-	1	1	-	1
CO3	Analyze the different losses of pre-stressing	2	2	2	-	-	-	-	-	-	-	-	2	2	-	2
CO4	Design prestressed concrete beams under flexure.	3	2	2	-	-	-	-	-	-	-	-	2	2	-	2
C05	Design prestressed concrete beams under shear and torsion and interpret the relevant IS code provisions for prestressed concrete.	3	2	2	-	-	-	-	-	-	-	-	2	2	-	2
	Average value of CO	2.00	2.00	2.00	-	-	-	-	-	-	-	-	1.60	1.60	-	1.60
17CE35	ENVIRONMENTAL ENGINEERING	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	Evaluate the impacts of air pollution due to meteorology and estimate the ground level concentrations of pollutants at any location using available air quality models	3	-	-	-	-	1	-	-	-	-	-	1	1	-	1
CO2	Design the air pollution control equipment	2	-	2	-	-	1	-	-	-	-	-	1	2	-	1
C03	Apply appropriate measures to estimate and reduce noise pollution	2	-	-	-	-	1	-	-	-	-	-	1	1	-	1

1								•							
Apply appropriate techniques for management of solid waste in the society	2	-	2	-	-	1	-	-	-	-	-	1	2	-	1
Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems	2	-	-	-	-	1	-	-	-	-	-	1	1	-	1
Average value of CO	2.20	-	2.00	-	-	1.00	-	-	-	-	-	1.00	1.40	_	1.00
GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
Digitize and create thematic map and extract important features using GIS software.	-	2	2	-	3	-	-	-	1	1	-	1	2	-	2
Analyze and interpret the maps created using GIS for specific applications.	-	2	2	-	3	-	-	-	1	1	-	1	2	-	2
Develop coding for civil engineering problems and analyze the results.	-	2	2	-	3	-	-	-	1	1	-	1	2	-	2
Average value of CO	-	2	2	-	3	-	-	-	1	1	-	1	2	-	2
QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB	P01	P02	РО3	P04	P05	P06	P07	P08	P09	P010	P011	PO12	PSO1	PSO2	PSO3
Estimate the quantities for different items of civil engineering using software tools.	-	2	-	-	2	-	-	2	1	1	-	1	3	-	2
Prepare the estimate of different items of RCC elements.	-	2	-	-	2	-	-	2	1	1	-	1	3	-	2
Control the project for execution of civil engineering projects through systematic planning.	-	2	-	-	3	-	-	2	1	1	-	1	3	-	3
Average value of CO	-	2	-	-	2.3	-	-	2	1	1	-	1	3	-	2.33
ENVIRONMENTAL SANITATION	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of civil engineering using software tools. Prepare the estimate of different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of civil engineering using software tools. Prepare the estimate of different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of civil engineering using software tools. Prepare the estimate of different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO - 2 2 - 3 - 4 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of civil engineering using software tools. Prepare the estimate of different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO - 2 -	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO - 2	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of civil engineering using software tools. Prepare the estimate of different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO - 2	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of civil engineering using software tools. Prepare the estimate of different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO - 2 2 2 3 2	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO - 2 2 3	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO Corrected to solid waste in the society and apply the principles of a policy and apply the principles of a policy and analyze the results. Average value of CO Corrected to solid waste in the society and apply the principles of a policy and apply the principles of principles of a policy and apply the principles of principles of policy and apply the principles of principles of policy and apply the principles of policy and apply apply and apply apply and apply apply and apply app	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO CIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of RCC elements. Control the project for execution of civil engineering projects through systematic planning. Average value of CO CO CO CO CO CO CO CO CO CO	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO QUANTITY ESTIMATION AND PROJECT MANAGEMENT LAB Estimate the quantities for different items of civil engineering using software tools. Prepare the estimate of different items of RCC elements. Control the project for execution of civil engineering projects management of solid engineering projects who are the solid engineering projects who are the solid engineering projects for execution of civil engineering projects Average value of CO - 2 2 2 2 - 2 - 1 1 1	management of solid waste in the society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems Average value of CO GIS AND COMPUTER APPLICATIONS IN CIVIL BIGHNEERING LAB Digitize and create thematic map and extract important features using GIS software. Analyze and interpret the maps created using GIS for specific applications. Develop coding for civil engineering problems and analyze the results. Average value of CO - 2 2 - 3 1 1 1.00 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO11 PO11 PO11 PO11 PO11 PO11	Management of solid waste in the society	management of solid waste in the society S	management of solid waste in the society Society Analyze the impacts of hazardous waste flow in society and apply the principles of environmental management to develop solutions to major environmental problems 2

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

CO1	Recognize the basic terminology of Environmental sanitation	2	-	-	-	-	1	1	-	-	-	-	1	1	-	1
CO2	Interpret the control approaches of Communicable and non-communicable diseases	2	-	-	-	-	1	1		-	-	1	1	1	1	1
CO3	Identify and assess the control approaches for rodent and vectors	2	-	-	-	-	1	1	•	-	-	ı	1	1	1	1
CO4	Classify the appropriate sanitation measures for several institutions.	2	-	-	-	-	1	1		-	-	ı	1	1	,	1
CO5	Categorize the sanitation aspects for rural and refuse management	3	-	-	-	-	1	1	-	-	-	-	1	1	-	1
	Average value of CO	2.2	-	-	-	-	1	1	-	-	-	-	1	1	-	1

Head of the Department