LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

Department of ECE

Attainment of Program Outcomes and Program Specific Outcomes (2016 - 20 Batch)

a) Direct assessment tools and attainment process:

- The performance of the students in the examinations during the semester in each course is used to compute the level of attainment of the POs and PSOs through the mapping of questions to COs & COs to POs and PSOs.
- CO-PO & PSO mapping for all the courses in the program is prepared by The program coordinator.
- An MS Excel sheet is used to compute the level of attainment of the POs and PSOs
- The attainment of the POs & PSOs is computed as a weighted average of attainment of the COs that are mapped to the given POs & PSOs.

b) Indirect assessment tools and attainment process:

The following indirect assessment tools are used for calculating PO & PSO attainments.

- (i) Program Exit survey
- (ii) Student portfolio.

The overall PO & PSO attainments are calculated as follows:

- ✓ 70% for direct assessment tool
- √ 30% for indirect assessment through surveys
 - 10% for program exit survey
 - 20% for student portfolio

Results of evaluation of each PO & PSO.

- The attainment of POs and PSOs are compared with the expected level and the process is carried out to continuously improve the attainment level.
- In addition to the above, an internal academic audit is being carried out to observe and realize how direct and indirect assessment tools can be improved to ensure that all course outcomes are realized and aligned with POs & PSOs.
- Every year Action Taken Report(ATR) is to be prepared to attain expected levels of POs and PSOs

The following table1 depicts the POs & PSOs Direct Attainment

1. Direct Attainment Values - 2016 Batch

Course	COs	CO Attainment					Pro	ogram	Out	comes	(POs)					gram Sp comes (I	
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
311-	CO1	63.45						2			3	3		2		1	
	CO2	62.00						2			3	3		2			
Eng - I	CO3	76.00						2			3	3		2			
	CO4	70.00						2		SHEET STREET	3	3		2			
11	CO5	72.00						2			3	3		2			
	CO1	77.45	3	2	2									2			
	CO2	74.32	3	2	2									2			
M - I	CO3	73.43	2	2	1									2			
	CO4	63.41	3	2	2									.2			
	CO5	73.00	3	2	2									2			
# ·	CO1	72.15	3	3	MY.	2				up in	Janua .	EUF		3			
	CO2	72.20	3	3		2								3	- 100		
EP	CO3	.64.78	3	3	2	2	2							3		in y	- Mail
	CO4	61.11	3	3	3	2	2							3			
	CO5	61.19	3	3	11 1	2	1							3			
FILE	CO1	68.26	2	2	1		U.							1		2	
	CO2	63.03	2	3	1									1		2	
ECN - I	CO3	65.00	2	2	1					34	100		1	1		2	
	CO4	51.67	2	3	1	110			-51	Aug.		15 60	THE RE	1		2	
	CO5	49.08	2	1	1						16			1		2	
	CO1	74.27	2	3		-				in all		1		1			
	CO2	65.77	2	3	2	-1				TEU		1		1			
CP	CO3	73.43	2	3	2	1						1		1			
	CO4	58.67	2	3	2						100	1		1			
-	CO5	62.40	2	3	2							1		1			
13 6	CO1	89.06	3	3	2	2					3			3			
	CO2	89.06	3	3	2	2					3			3			,10 d
EP Lab	CO3	89.06	3	3				100	-	1111	3	ALCO		3			- And
	CO4	89.06	3	3	200	77.		AN TO			3	Jun 1-4	E CANTO	3			
16 17 18 18	CO1	61.78	3		2	3	3	3			3			2			
	CO2	61.78	3		2	3	3	3			3			2			
EWS	CO3	61.78	3		2	3	3	3	Junio	117/50	3	Mal		2			
	CO4	61.78	3		2	3	3	3			3			2			
ALLE LI	CO1	56.44	2	3	1						1	1		2			
CP Lab	CO2	56.44	2	3	1						1	1		2	Tanl.		-5
	CO3	56.44	2	3	1						1	1	137	2	en im		
Art In the	CO1	63.78					3				1		2	1			
	CO2	63.78					3	a)			1		2	1			-
CAED LAB	CO3	63.78					3				1	BITTE	2	1	of Ban		
	CO4	63.78			Bal	3,110	3				1		2	1			
	CO1	72.61					2			3	3		2				
	CO2	74.11					2			3	3		2	MERY			
ENG - II	CO3	74.75				27	2			3	3		2	24 In	2001		
	CO4	72.34	Hille	- Like	910		2	NIT!		3	3		2		I. I.		
	CO5	67.64					2			3	3		2				

Course	COs	CO Attainment			(MP	14	Pro	gram	Out	comes	(POs)					ram Spomes (P	
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	78.00	3	2	2							1		2	STEP IN	1 70	
	CO2	79.00	3	2	2						1 5			2	110	HIE	
M-II	CO3	75.00	2	2	1									2		1.5	
	CO4	71.00	3	2	2									2		1199	- 4
	CO5	64.00	3	2	2						14			2		111	
	CO1	63.16	3	3	2			2	1					2			
	CO2	66.34	3	3	2			2	1	The second			1,515	2			
EC	CO3	73.09	3	2	3			2	1					2			
	CO4	68.37	3	2	2			2	1					2	7.59		
	CO5	71.10	3	2	2			3	2			7 1		2			
	CO1	75.58	2	3	1									1		2	
	CO2	73.71	2	3	3		-10	115		OHES.	(Pros	200		1		2	
ECN - II	CO3	74.11	2	3	3									1		2	
	CO4	63.80	2	3	3									1		2	
	CO5	62.41	1					9						1		2	
	CO1	79.79	3	2										2		2	
	CO2	79.24	3	2										2	Brie	2	
EDC	CO3	80.69	3	1										2	1100	2	
	CO4	68.61	3	3	2									2	E della	2	
	CO5	60.73	3	2	2									2	7 600	2	
	CO1	90.82	3	3		2		2	2						110		
EC LAB	CO2	90.82	2	3										Mali	-110		
EC LAB	CO3	90.82	3	2						1	1 8						
	CO4	90.82	2	2													
	CO1	90.00				3					3	3		2	7 10		
ENGLISH	CO2	91.00				3			8		3	3	F	2		1-10	
LAB	CO3	90.40				3					3	3		2			
	CO4	91.00				3					3	3		2			
V	CO1	59.33	1	1		2.	2					73 =1				3	
ECN LAB	CO2	59.33	1	2		3	3							MA		3	
	CO3	59.33	1	1		1	1									3	
	CO1	66.29	2	2		3	2									3	
EDC LAB	CO2	66.29	2	2	1	3	2				1					3	
	CO3	66.29	2	2	1	3	2								THE	3	
	CO1	80.59	3	2	2									2			
	CO2	75.55	3	2	2							12.1		2			
M - III	CO3	76.94	2	2	1									2			
	CO4	67.84	3	2	2		E					1		2			
	CO5	72.36	3	2	2									2	7 17		
THE S	CO1	89.73	2	2										2		2	
	CO2	86.72	2	2	1							100		2		2	
AEC	CO3		1	2										2		2	
	CO4		1											2		2	
	CO5		2	2	3									2		2	

Course	COs	CO Attainment					Pro	gram	Outo	omes	(POs)			(III)	Outco	ram Spo omes (P	SOs)
Course	003	Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	85.84	1	2									7.	2		2	
	CO2	84.96	2	2	3						7.72			2		2	
DEC	CO3	79.89	2	2	3					- 13				2	75	2	
	CO4	81.74	1	2	2									2		2	
	CO1	79.24	2	2	2	-								1	110	2	
	CO2	83.72	3	2	3					•				1	1	2	
PSC	CO3	85.84	3	2	2									1	1	2	
	CO4	71.48	3	2	3									1		2	Visite !
	CO5	68.42	1	1	1						10			1		2	
	COI	93.65	3	3		1								1	2		1
	CO2	91.34	2	2		1					Here			1	2		1
RVSP	CO3	74.85	2	2		1								1	2		1
	CO4	82.35	2	3		1								1	2	LEIM	1
	CO1	80.70	3	2	1	1								2			3
	CO2	71.00	3	2	1	2								2		1 3	3
SS	CO3	70.81	3	3	1	3								2			3
	CO4	65.06	3	2	1	1								2			3
	CO5	51.43	3	3	3	3								2			3
N TOP I	CO1	90.51								3					-		
	CO2	92.05			1					3							
PEHV	CO3	93.64		1	2					3	2						
	CO4	81.63				1		2		3	1		EH	12.00			
	CO5	83.56						1	2	3				1	Hall		
	COI	53.80	3	3		3	3					71		11100	710	2	
	CO2	53.80	1	2		2	2							ijis (u		1	
AEC LAB	CO3	53.80	1	1		2	2							And I	THE	1	10314
	CO4	53.80	2	1	1	3	3							Maul-	Tim	2	
	CO5	97.00								1	2	3		1			
	COI	67.00	3	3		3	3				+					2	
	CO2	62.00	2	2		3	3								136	2	
PDC LAB	CO3	68.00	3	1		3	3									2	
	CO4	73.00	2	1	1	3	3	1						BONS	- 10	2	
	CO5						4 -			1	2	3		1		1 88	
	COI		2	2										2	3	7	
	CO2		1	1										2	3		
AC	CO3		1	3										2	3		
	CO4		2	2										2	3		
	CO5		3	2					1 15					2	3		
	COI		2	3	1									2	The second	2	
	CO2	100000000000000000000000000000000000000	3	3	1									2		2	
AIC	CO3		1	2	3									2		2	
	CO4		3	2	1									1		2	
	COS		2	2	3	1								2		2	

Course	COs	CO Attainment							Out	comes					Outc	ram Sp omes (P	SOs)
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	77.99	1	1	1									1		2	
	CO2	83.33	1	2	1						1,5			2		2	
СО	CO3	87.30	1	2	3									2		2	
	CO4	88.52	2	2	2			8						2		2	
	CO5	85.49	1	1	1									1		2	
e le constitue de	CO1	79.76	1	2	1		, -							2		A BOTT	1
	CO2	81.15	1	3	2									2			2
CS	CO3	86.04	1	3	2						15	A STATE OF		2			2
	CO4	87.55	1	3	2									2			2
	CO5	86.43	1	3	3		11	4						2 ·			2
16.0	CO1	72.89	3	3	1	1								2			2
	CO2	70.19	3	3	2					211				2			2
DSP	CO3	72.19	3	3	2									2			2
	CO4	65.46	3	3	3	2						TE TEL		2			3
	CO5	67.29	3	3	3	2								2			3
-	CO1	86.08	2	2	1			2						2	3		
	CO2	80.90	2	2	1			2						2	3		
EMFW	CO3	89.06	3	3	1			2				H Tes		2	3		State
	CO4	86.82	1	1	1			1	1					2	3	297	
	CO5	83.66	1	1	1					- 1				1	2		
	CO1	89.13	3	2	1	2					FIE			1			
	CO2	78.10	3	2	1	2								1		Piles	
ES	CO3	91.33	2	3	1	3								1	- 18		W.
	CO4	92.02	2	3	1	3								1			
	CO5	91.37	2	3	1	3								1			
	CO1	71.00	2	2	3	2	2									3	
	CO2	71.00	2	1	2	1	1									3	
AIC LAB	CO3	73.00	2	2	3	1	1									3	
	CO4	100.00								1	2	3		1		3	
	COI	71.00	1	1			3						T j	100		1911	3
0000	CO2	69.00	2	3		1	3										3
SSP LAB	CO3	74.00	2	2	3	2	3										3
	CO4	100.00					130			1	2	3		1			
表标作	CO1	85.50	1	1										1	2		
	CO2	84.90	1	2										2	2		
DC	CO3	90.10	1	2	2									2	3		450
	CO4	87.30	3	2	3							1		2	2		
	CO5	82.20	2	2	2									3	2		
	COI	77.80	1		1									1		3	
	CO2		1		2		2					13		2		3	
DSD -	CO3		3	2	2		2						15	2		3	1 12
VHDL	CO4		3	2	3		2							2		3	
	CO5		2	2	3							Fine		2		3	

Course	COs	CO Attainment					P	rogran	n Ou	tcome	s (POs)		II'R		gram S tcomes (
111		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	89.00	1	1	1							111		VALIT		1	
	CO2	85.00	1	1	3									1		2	
EMI	CO3	89.90	2	2								2	F	1		2	33
	CO4	88.60	1											1		2	
	CO5	84.90	2	2				7				-17		1		2	
	CO1	66.70	1					2						1		2	
	CO2	69.40	2	2	2									1		2	
MP & MC	CO3	78.00	2	2	2									1		3	
	CO4	64.60	1	2										1		2	
	CO5	72.20	2	2	3									1	Late	3	
	CO1	65.30	2	2								184		1	2		
me er -	CO2	68.30	2	3										1	2		
TSSN	CO3	75.70	1	1							PE			1	2		
	CO4	78.80	1	1								50		1	1		
0.1.1.1	CO5	74.80		2										2	3		
	CO1	73.70	2	2	3									1	3		
	CO2	27.60		2	2									1	2		
TLWG	CO3	59.20	1	3								1.6.1		1	2		Tillen
	CO4	60.70	1	3										1	3	D.L.	
2	CO5	59.90	2	2	3						III A			1	3		
	CO1	77.00	1	1		2	1							1-13.91	3		
	CO2	77.00	1	1		1	2					141			3		
ADC LAB	CO3	69.00	1	1		2	1					Tu			3		
	CO4	72.00	1	1		2	1			- 1				To Base	3		
	CO5	100.00									2	3					
	CO1	68.00	1	2	1	2	2								J)r	2	
MPMC	CO2	72.00	1	1	2	2	2							To IT		2	
LAB	CO3	76.00	1	2	2	2	2							190		2	
	CO4	97.65									2	3		Term		RIE	
	CO1	80.70	3	2	1		2	2			2			3	3	3	3
SEMINAR	CO2	82.10	1	2	2	2	3	2			2			3	3	3	3
	CO3	72.90										3		3			
	CO4	77.84				Y IA						3		3			
	CO1	77.10	1											1	1		
	CO2	77.10	2	2	2					3				2	2		
AWP.	CO3	74.30	2	2	3									2	3		
	CO4	73.90	1	1	1									1	2		
	CO5	69.20	1	1				£						1	2		
	COI	67.70	1	1			1							1	TIME	2	
DCD	CO2	74.80	1	2	2		2							2		3	
DSD - VERILOG	CO3	68.10	2	2	3		2						4	2		-3	
	CO4	72.00	2	2	3		2				HIE			2	HE	3	
	CO5	60.00	2	2	3						-		94	1	- 1 1 1 1	3	Hill

Course	COs	CO Attainment					Pro	gram		omes				SEA	Oute	ram Spo omes (P	SOs)
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	94.10	3	2			2							2	1		
	CO2	77.20	3	2			2	ETR	2					2	1		
DSOOP	CO3	80.40	3	2			2							2	1	M. B.	
	CO4	77.40	3	2			2							2	1		
	CO5	75.40	3	2			2							2	1		
	CO1	75.40	1	2										1		2	
	CO2	68.20	2	2	3									1		2	
VLSID	CO3	68.90	2	2	3									2		3	
	CO4	69.40	2	2	3									2		3	
	CO5	63.30	2	2	2									1		3	
	CO1	73.30	1										955	1			1
	CO2	74.20	2	2	1									1			2
DIP	CO3	70.20	2	3	3								Nel 1	2			3
	CO4	74.80	1	1	1									1			2
	CO5	72.10	1	1	1							TIT		2			2
	CO1	73.40	1	1							100			1		1	
	CO2	69.00	1		1									1		1	
ESD	CO3	74.20	1	2	2									1		2	
	CO4	65.40	1	1	2									1		2	
	CO5	75.20	2	2	3									1		3	
	CO1	76.86	3	2			2							2	1		
	CO2	69.00	3	2			2						4	2	1		
DSOOP	CO3	71.08	3	2			2							2	1		
LAB	CO4	71.08	3	2			2							2	1		- 4
-	CO5	68.72	3	2			2					I FE		2	1		
	CO6	100.00								1	2	3		1		Ta II	
	COI	66.00		1		3		2			3			2			
	CO2	66.00		1		3		2			3			2			
CPS LAB	CO3	66.00		1		3		2		H	3			2			
CFSLAB	CO4	66.00		1		3		2			3			2			
	CO5	66.00		1		3		2			3			2		SE 7	
	CO6	100.00								1	2	3		1			
	CO1	85.94	2	3				3			1			3	3	3	3
	CO2	78.02	2	3	3	3	3	3	2					3	3	3	3
MINI	CO3	73.48	2	3	3	2	2	3	2				3	3	3	3	3
PROJECT	CO4	66.56										3		3		12/2	
	CO5	78.58								3	3			3			
	CO6	68.40										3		3			
	CO1	83.20	2							2	1			2			
	CO2	78.70					2							2			
IM	CO3	81.70												2			
	CO4	81.60								3	2			2			
	CO5	79.00				2						T.	1	2			

Course	COs	CO Attainment							m Ou	tcom	es (PO	s)		199		ogram S tcomes (
B		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3-
	CO1	72.10	1											1	1	of B	
	CO2	61.90	1	2										1	2		
MWE	CO3	73.50	1	1										1	2		
	CO4	58.70	2	2	2									1	3	312	
BIN.	CO5	49.10	1	2										1	2		
	CO1	72.00 -	1											1	2		
	CO2	70.80	1	2	1			1	1					1	2		
OC	CO3	56.10	1	2	1			1	1				Ball	1	1		MRIV
	CO4	58.40	2	3	2									1	3		
R LET	CO5	53.00	3	3	2			2	2					1	3		
	CO1	59.30	2	1	1									1	1	9	
	CO2	58.00	2	3	1									1	2	191	
CMC	CO3	65.70	1	2	3							1,00		1	3		
	CO4	59.00	1	1	1					-				1	2		
	CO5	69.00	1	1	1									1	2		
Mil.	CO1	68.00	1	2										1	2		
	CO2	53.90	2	2	3									2	3		
CN	CO3	46.80	2	2	3									2	3		
	CO4	53.70	1											1	1		
	CO5	43.40	2	2	3					1				1	3		
111,5	CO1	73.60	1	1			-							1	3	1	
	CO2	62.10	1	2	1									1			
PLD	CO3	57.70	1	2	2									2		3	
	CO4	57.70	1	3	2												
	CO5	37.70	1	2	3					-				1		2	90-1
	COI	78.00	2	2		3	2							2		3	
	CO2	72.00	1	2	3	3	3						7		F1.	3	
DSD LAB	CO3	72.00	1	2	3	2	2							- 100		2	
	CO4	93.00	1	4		- 4				1	2	2		1000	150	2	
	CO1	76.00	1	1	1	1	1			1	2	3		1		4	
	CO2	73.00	1	1	1	1	1								2		
MWOC	CO3	70.00	2	2	1	2	2		- 1						2		
MWOC LAB	CO4	70.00	2	2		2	2								3		
	CO5	71.00	1		1				_						3		
	CO6		1	1	-	1	.1								1	D _E	
		96.70	2	2	2	2		_		1	2	3		1			
	CO1	72.20	3	3	2	3		2	2	- 11	3			3	3	3	3
NTERSHIP	CO2	78.40	3	3	3	3	3	2			3			3	3	3	3
	CO3	81.70								Variable	3	3		3			2011
	CO4	66.10					1			3	3	3		3		MATE	
	CO1	64.40	1	1						4				1	2		
	CO2	63.50	1	2	19				- 1					1	1	178 1	het
RS	CO3	57.50	1	2										1	2		tiple st
	CO4	53.10	1	2										1	2		
	CO5	51.50	1	2									E	1	2		

Course	COs	CO Attainment					Progr	am Oı	itcom	es (PO	s)			-515	Prog Outc	ram Sp omes (F	ecific PSOs)
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	62.40	1	2										1	1		
	CO2	44.30	1	2	1						- 40			1	2		
SC	CO3	39.30	2	2	1									1	3		
	CO4	53.50	1	2										1	2		
	CO5	81.90	1	The same										1	2		
	COI	52.50	1	1				ATT N					The state of	1		1	
	CO2	80.20	1	1	1111		2							1		2	
AE	CO3	54.10	1	2	1		1		Sept.					1		2	
	CO4	81.90	1	1				i izgli		N.B				1		1	
	CO5	84.60	1	1				-54						1		1	
	CO1	37.90	2	1	3		2	1					1	1	2	3	2
	CO2	23.50	2	1	3		2	1					-	1	2	3	2
WT	CO3	37.30	2	2	3		2	1						1	2	3	2
	CO4	32.50	2	2	3		2	1						1	2	3	2
	CO5	41.40	2	2	3		2	1						1	2	3	2
9	CO1	69.30	2	3				3						3	3	3	3
	CO2	68.90	2	3	3	3	3	3	2	72.1		171014	Side	3	3	3	3
MAIN	CO3	63.80	2	3	3	2	2	3	2		111		3	3	3	3	3
PROJECT	CO4	62.06										3		3			
	CO5	74.25								3	3		7.9	3			
	CO6	60.38										3		3		= 1	
	CO1	76.90	3	3	3			THE	181	TOTAL	linte.	Teleli	p. m	2	3	3	3
CVV	CO2	72.64									3	3		2			
Direct	Attainn	ient (%)	72. 00	71 .60	70. 12	70. 83	67. 67	68. 74	71. 78	81. 20	77. 71	80. 99	68. 96	73. 04	68. 46	70. 67	70. 12

Indirect Attainment (2016 Batch):

1. Exit Survey (2016 Batch):

POs/PSOs	Excellent (4)	Very Good (3)	Good (2)	Poor (1)	Total No of Students Participated	Attainment Value
PO1	52	92	63	1	208	73.44
PO2	54	85	66	3	208	72.84
PO3	50	77	75	6	208	70.55
PO4	46	82	78	2	208	70.67
PO5	50	76	77	5	208	70.55
PO6	56	88	63	1	208	73.92
PO7	59	85	60	4	208	73.92
PO8	62	88	57	1	208	75.36
PO9	63	94	51	0	208	76.44
PO10	69	89	50	0	208	77.28
PO11	63	82	59	4	208	74.52
PO12	59	83	65	1	208	74.04
PSO1	56	89	60	3	208	73.80
PSO2	46	88	70	4	208	71.15
PSO3	51	84	73	0	208	72.36

2. Student Portfolios (2016 Batch):

2.1. Co-curricular Details:

Component	No. of studer	nts	Total No. of Final Year Students	%	Weightage	Attainment (%)
Workshops	Participated	123	212	58.02	0.2	11.7
Certification	Participated	93	212	43.87	0.05	2.2
Programs	Certified	93	212	43.87	0.15	6.6
NPTEL	Successfully Completed	146	212	68.87	0.1	6.9
	(ELITE+GOLD) + ELITE	18	212	8.5	0.05	0.5
Technical Fest (Paper Presentation, Poster Presentation, Quiz, Project Expo,	Participated	98	212	46.23	0.2	9.3
etc.)	Awards	14	212	6.61	0.1	0.7
Journal Publications	Involved	204	212	96.23	0.1	9.7
Industrial Visit	Participated	173	212	81.61	0.05	
	Attainmen	ıt (%)		01.01	0.03	4.1 51.7

2.2. Extra-curricular Details (2016 Batch):

Component	No	o. of students		Total No. of Final Year Students	%	Weightage	Attainment (%)
		State Level	0	212	0	0.05	0
	Participated	International/ National Level	0	212	0	0.1	0
Sports &		University & Institute Level	149	212	70.29	0.1	7.1
Games		State Level	0	212	0	0.1	0
	Awards	International/ National Level	0	212	0	0.2	0
		University & Institute Level	53	212	25	0.05	1.3
Yoga	Participated		20	212	9.44	0.1	1
Tuga	Awards		20	212	9.44	0.1	1
Cultural	Participated		60	212	28.31	0.1	2.9
Activities	Awards .		1	212	0.48	0.1	0.1
		Attainmen	t (%)		//		13.4

2.3. Extension Activities (NSS, NCC) Details (2016 Batch):

Component	No. o	of students		Total No. of Final Year Students	%	Weightage	Attainment (%)
		Adopted Villages	7	212	3.31	0.2	0.7
NSS	Participated	Institute Level /Local Community	121	212	57.08	0.3	17.2
	Awa	rds		26	212	12.27	0.2
	Partic	ipated		30	94	31.92	0.1
NCC	Awa ('B' & 'C' o			29	94	30.86	0.2
		Attainme	nt (%	6)			29.8

2.4. Placements & Higher Studies Details (2016 Batch):

Component	No. of stud	lents	Total No. of Final Year Students	%	Weightage	Attainment (%)
Placement	Placed	141	212	66.51	0.8	53.3
Higher Studies	Qualified in Competitive Examinations	09	212	4.25	0.2	0.9
OA	314	Attain	ment (%)			54.2

Student Portfolio Attainment:

	Component	% Attainment					Prog	ram C	utcom	es (%)					ram Sp comes	
			1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C	OCURRICULAR ACTIVITIES	51.7	3	3	3	2	2	2	2	3	3	1	1	3	3	3	3
	EXTRA CURRICULAR ACTIVITIES	13.4								3	3					13.28	11111
T	NSS and NCC	29.8							3	3	3				172		
	PLACEMENT &HIGHER STUDIES	54.2	3	3	3	3	3		-		3	3		3	3	3	3
-	% Pos and PSOs A	ttainment	52.95	52.95	52.95	53.20	53.20	51.70	38.56	31.63	37.28	53.58	51.70	52.95	52.95	52.95	52.95

The Following Table depicts the POs & PSOs Indirect Attainment.

Assessment		Program Outcomes (%)									Program Specific Outcomes (%)				
Tool	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Program Exit Survey (%)	73.44	72.84	70.55	70.67	70.55	73.92	73.92	75.36	76.44	77.28	74.52	74.04	73.80	71.15	72.36
Portfolio Component (%)	52.95	52.95	52.95	53.20	53.20	51.70	38.56	31.63	37.28	53.58	51.70	52.95	52.95	52.95	52.95
Indirect Attainment (%)	17.93	17.87	17.65	i7.71	17.70	17.73	15.10	13.86	15.10	18.44	17.79	17.99	17.97	17.71	17.83

The overall attainment of the 2016-20 batch is depicted in the following table

Assessment Tool	Trogram outcomes (70)						Program Specific Outcomes (%)								
100T 90T	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Target (%)	66.00	66.00	65.00	66.00	67.00	64.00	64.00	64.00	66.00	67.00			C7 00	CM 00	C# 04
Direct Attainment (%)						- Hotel				80.99	-81		68.46	A 17	
Indirect Attainment (%)	17.93	17.87	17.65	17.71	17.70	17.73	15.10	13.86	15.10	18.44	17.79	17.99	17.97	17.71	17.83
PO	68.33	67.99	66.73	67.29	65.06	65.85	65.35	70.7	69.5	75.14	66.06	69.12	65.89	67.17	66.91

Date: 14.12.2020

HEAD

Department of Electronics & Communication Engineering Lakireddy Bali Reddy College of Engineering
WYLAVARAM, Krishna Dt., Andhra Prades

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

Department of ECE

PO / PSO	2014 Batch	2015 Batch	2016 Batch
PO1:Engineering knowledge	68.77	70.96	68.33
PO2:Problem analysis	68.6	71.31	67.99
PO3:Design/development of solutions	67.83	70.13	66.73
PO4:Conduct investigations of complex problems	68.27	69.08	67.29
PO5:Modern tool usage	64.93	67.28	65.06
PO6:The engineer and society	67.46	69.82	65.85
PO7:Environment and sustainability	66.81	73.27	65.35
PO8:Ethics	74.99	74.45	70.7
PO9:Individual and team work	70.87	70.44	69.5
PO9:Communication	72.62	73.3	75.14
PO10:Project management and finance	69.59	67.78	66.06
PO11:Life-long learning	70.44	71.79	69.12
PSO1: Communications	70.37	74.35	65.89
PSO2: VLSI & Embedded Systems	65.49	70.28	67.17
PSO3: Signal Processing	70.51	73.43	66.91

Date: 14 /12/2020

Department of Electronics & Communication Engineering Lakireddy Bali Reddy College of Engineering MYLAVARAM, Krishna Dt., Andhra Pradesh

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi), L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

Dt:16.12.2020

Department of Electronics & Communication Engineering

POs& PSOs Attainment Levels for 2016 Admitted Batch and Actions Taken for improvement

66	68.33	1. Out of 69 courses, 62 courses are contributing to PO1. Among these 69 courses contribution by 10 courses is less. 2. Contribution through indirect attainment is bit lagging
fining the e		
for test ite	experiments with more	h quality objectives. knowledge based questions.
arget	Attained	Observation
66	67.99	63 out of 69 courses are contributing for PO2. Lesser values of CO attainments are observed for 12 courses. Contribution through indirect attainment is slightly low.
	66 ponds to a	Lucia de la compansión

PO	Target	Attained	Observation
PO3: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	65	66.73	1. The number of course mapped to this PO is 54. Eleven courses have not reached the desired attainment level.

Action1: It was observed that attainment values that are less in theory courses corresponds to application oriented courses and thus can be enhanced by organizing guest lectures, symposiums in the relevant domain.

Action2: To strengthen the portfolio components students need to be encouraged to undergo certification programs, participate in workshops, hackthon etc.

Action3: The attainment in the courses that are more mathematics based can be improved by practicing more problems as well as giving assignments involving derivative questions.

PO	Target	Attained	Observation
PO4: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	66	67.29	1. Two out of 27 courses that are correlated to this PO have not got significant attainment values.

Action 1: The attainment in the laboratory courses can be further improved by redefining the experiments with quality objectives.

Action 2: To strengthen the portfolio components students need to be encouraged to undergo certification programs, participate in workshops, backthon etc.

PO	Target	Attained	Observation
PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.	67	65.06	Out of 24 courses that are contributing to PO5, three got less attainment.

Action1: It was observed that attainment in web technologies is very less and can be strengthened by conducting more practical sessions involving more real time problems.

Action 2: The attainment in the laboratory courses can be further improved by redefining the experiments with quality objectives.

Action 3: To strengthen the portfolio components students need to be encouraged to undergo certification programs, participate in workshops, hackthon etc.

PO	Target	Attained	Observation
PO6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	64	65.85	Out of 13 courses that are contributing to PO6, two got less attainment.

Action1: The usages of ICT tool are suggested for theoretical courses.

Action2: Students are encouraged to participate in co curricular activities.

Action2. Students are encouraged to participate in co curredian activities.			
PO	Target	Attained	Observation
PO7: Understand the impact of the professional engineering solutions in	64	65.35	Out of 7 courses that are

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development			contributing to PO6, one got less attainment. Contribution through extension activity is lagging
Action1: The usages of ICT tool are suggested for theoretical courses. Action2: The students will be encouraged to participate in activities that con-	tribute to the soc	ciety like NCC a	nd NSS.
PO	Target	Attained	Observation
PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice	64	70.7	Out of 15 courses that are contributing to PO7, one got less attainment. Contribution through extension activity is lagging
Action1: The usages of ICT tool are suggested for theoretical courses Action2: Student should be more encouraged towards participation in portfol			
PO Po di Maria di Man	Target	Attained	Observation
PO9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	66	69.5	Contribution of one laboratory course is slightly low.
Action1: The faculty of the laboratory courses was advised to conduct more Action2: Student should be more encouraged towards participation in extract activities.			activities, and NCC & NSS
PO	Target	Attained	Observation -
PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	67	75.14	Contribution of one laboratory course is slightly low.
Action1: Further improvement can be achieved by upgrading the student's kr Action2: Student should be more encouraged towards participation in co- cur			ing.
	m .	Attained	Observation
PO	Target		

Action1: Student should be more encouraged towards participation in co-curricular activities

PO	Target	Attained	Observation
PO12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	64	69.12	24 out of 69 courses that are mapped to this PO. 9courses bit lagging in the attainment level.
The stand of the land of the stand of the st			Contribution by co- curricular activities is slightly low.

Action1: The theory course attainments can be enhanced by preparing the students for test items with more knowledge based questions.

Action2: The attainment in the courses that are more mathematics based can be improved by practicing more problems as well as giving assignments involving derivative questions.

Action3: The faculty of the laboratory courses was advised to conduct more demonstration classes.

Action4: Student should be more encouraged towards participation in co-curricular activities

PSO	Target	Attained	Observation
PSO1: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.	67	65.89	1. Out of 69 courses, 28 courses are mapped to this PSO. Only for 5 courses the attainment levels are away from the targets. 2. Contribution by indirect attainment is slightly low.

Action1: It was observed that attainment values that are less in theory courses corresponds to application oriented courses and thus can be enhanced by organizing guest lectures, symposiums in the relevant domain.

Action 2:: The attainment in the courses that are more mathematics based can be improved by practicing more problems as well as giving assignments involving derivative questions

Action 3: Student should be more encouraged towards participation in co-curricular activities

PSO	Target	Attained	Observation
PSO2: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools	67	67.17	12 courses are mapped to this PO among 69 courses. Only for 5 courses the attainment levels are away from the targets.

			Contribution by indirect attainment is slightly low.
Action1: The attainment in the laboratory courses can be further improved by a Action2: Application oriented concepts can emphasize with help of examples a	7.5	xperiments wit	h quality objectives
PSO	Target	Attained	Observation
PSO3: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.	hanladh	Talies in	12 courses are mapped to this PO among 69 courses. Only for one courses the attainment levels are away from the
	65	66.91	targets. Contribution by indirect attainment is slightly low.

Action1: It was observed that attainment in web technologies is very less and can be strengthened by conducting more practical sessions involving more real time problems

Action2: Students will be motivated to undergo certification programs in relevant domain.

Head of the Department

Department of Electronics & Communication Engineering
Lakireddy Bali Reddy College of Engineering
WYLAVARAM, Krishna Dt., Andhra Pradesh

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

Department of ECE

Attainment of Program Outcomes and Program Specific Outcomes (2016 - 20 Batch)

a) Direct assessment tools and attainment process:

- The performance of the students in the examinations during the semester in each course is used to compute the level of attainment of the POs and PSOs through the mapping of questions to COs & COs to POs and PSOs.
- CO-PO & PSO mapping for all the courses in the program is prepared by The program coordinator.
- An MS Excel sheet is used to compute the level of attainment of the POs and PSOs
- The attainment of the POs & PSOs is computed as a weighted average of attainment of the COs that are mapped to the given POs & PSOs.

b) Indirect assessment tools and attainment process:

The following indirect assessment tools are used for calculating PO & PSO attainments.

- (i) Program Exit survey
- (ii) Student portfolio.

The overall PO & PSO attainments are calculated as follows:

- ✓ 70% for direct assessment tool
- √ 30% for indirect assessment through surveys
 - 10% for program exit survey
 - 20% for student portfolio

Results of evaluation of each PO & PSO.

- The attainment of POs and PSOs are compared with the expected level and the process is carried out to continuously improve the attainment level.
- In addition to the above, an internal academic audit is being carried out to observe and realize how direct and indirect assessment tools can be improved to ensure that all course outcomes are realized and aligned with POs & PSOs.
- Every year Action Taken Report(ATR) is to be prepared to attain expected levels of POs and PSOs

The following table1 depicts the POs & PSOs Direct Attainment

1. Direct Attainment Values - 2016 Batch

Course	COs	CO Attainment					Pro	ogram	Out	comes	(POs)					gram Sp comes (I	
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
311-	CO1	63.45						2			3	3		2		1	
	CO2	62.00						2			3	3		2			
Eng - I	CO3	76.00						2			3	3		2			
	CO4	70.00						2		SHEET STREET	3	3		2			
11	CO5	72.00						2			3	3		2			
	CO1	77.45	3	2	2									2			
	CO2	74.32	3	2	2									2			
M - I	CO3	73.43	2	2	1									2			
	CO4	63.41	3	2	2									.2			
	CO5	73.00	3	2	2									2			
# ·	CO1	72.15	3	3	MY.	2				up in	Janua .	EUF		3			
	CO2	72.20	3	3		2								3	- 100		
EP	CO3	.64.78	3	3	2	2	2							3		in y	- Mail
	CO4	61.11	3	3	3	2	2							3			
	CO5	61.19	3	3	11 1	2	1							3			
FILE	CO1	68.26	2	2	1		U.							1		2	
	CO2	63.03	2	3	1									1		2	
ECN - I	CO3	65.00	2	2	1					34	100		1	1		2	
	CO4	51.67	2	3	1	110			-51	Aug.		15 60	THE RE	1		2	
	CO5	49.08	2	1	1						16			1		2	
	CO1	74.27	2	3		-				in all		1		1			
	CO2	65.77	2	3	2	-1				TEU		1		1			
CP	CO3	73.43	2	3	2	1						1		1			
	CO4	58.67	2	3	2						100	1		1			
-	CO5	62.40	2	3	2							1		1			
13 6	CO1	89.06	3	3	2	2					3			3			
	CO2	89.06	3	3	2	2					3			3			, in 18
EP Lab	CO3	89.06	3	3				100	-	1111	3	ALCO		3			- And
	CO4	89.06	3	3	200	77.		AND THE			3	Jun 1-1	E CANTO	3			
16 17 18 18	CO1	61.78	3		2	3	3	3			3			2			
	CO2	61.78	3		2	3	3	3			3			2			
EWS	CO3	61.78	3		2	3	3	3	Junio	117/50	3	Mal		2			
	CO4	61.78	3		2	3	3	3			3			2			
ALLE LI	CO1	56.44	2	3	1						1	1		2			
CP Lab	CO2	56.44	2	3	1						1	1		2	Tanl.		-5
	CO3	56.44	2	3	1						1	1	137	2	en im		
Art In the	CO1	63.78					3				1		2	1			
	CO2	63.78					3	a)			1		2	1			-
CAED LAB	CO3	63.78					3				1	BITTE	2	1	of Ban		
	CO4	63.78			Bal	3,110	3				1		2	1			
	CO1	72.61					2			3	3		2				
	CO2	74.11					2			3	3		2	MERY			
ENG - II	CO3	74.75				27	2			3	3		2	24 In	2001		
	CO4	72.34	Hille	- Like	910		2	NIT!		3	3		2		I. I.		
	CO5	67.64					2			3	3		2				

Course	COs	CO Attainment			(MP	14	Pro	gram	Out	comes	(POs)					ram Spomes (P	
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	78.00	3	2	2							1		2	STEP IN		
	CO2	79.00	3	2	2						1 5			2	1111	HIE	
M-II	CO3	75.00	2	2	1									2		1.5	
	CO4	71.00	3	2	2									2		1199	- 4
	CO5	64.00	3	2	2						14			2		111	
	CO1	63.16	3	3	2			2	1					2			
	CO2	66.34	3	3	2			2	1	The second			1,515	2			
EC	CO3	73.09	3	2	3			2	1					2			
	CO4	68.37	3	2	2			2	1					2	7.59		
	CO5	71.10	3	2	2			3	2			7 1		2			
	CO1	75.58	2	3	1									1		2	
	CO2	73.71	2	3	3		-10	115		OHES.	(Pros	200		1		2	
ECN - II	CO3	74.11	2	3	3									1		2	
	CO4	63.80	2	3	3									1		2	
	CO5	62.41	1					9						1		2	
	CO1	79.79	3	2										2		2	
	CO2	79.24	3	2										2	Brie	2	
EDC	CO3	80.69	3	1										2	1100	2	
	CO4	68.61	3	3	2									2	E della	2	
	CO5	60.73	3	2	2									2	7 600	2	
	CO1	90.82	3	3		2		2	2						110		
EC LAB	CO2	90.82	2	3										Mali	-110		
EC LAB	CO3	90.82	3	2						1	1 8						
	CO4	90.82	2	2													
	CO1	90.00				3					3	3		2	7 10		
ENGLISH	CO2	91.00				3			8		3	3	File	2		1-10	
LAB	CO3	90.40				3					3	3		2			
	CO4	91.00				3					3	3		2			
V	CO1	59.33	1	1		2.	2					3 -1				3	
ECN LAB	CO2	59.33	1	2		3	3							MA		3	
	CO3	59.33	1	1		1	1									3	
	CO1	66.29	2	2		3	2									3	
EDC LAB	CO2	66.29	2	2	1	3	2				1					3	
	CO3	66.29	2	2	1	3	2								THE	3	
	CO1	80.59	3	2	2									2			
	CO2	75.55	3	2	2							12.1		2			
M - III	CO3	76.94	2	2	1									2			
	CO4	67.84	3	2	2		E					1		2			
	CO5	72.36	3	2	2									2	7 17		
THE S	CO1	89.73	2	2										2		2	
	CO2	86.72	2	2	1							100		2		2	
AEC	CO3		1	2										2		2	
	CO4		1											2		2	
	CO5		2	2	3									2		2	

Course	COs	CO Attainment					Pro	gram	Outo	omes	(POs)			OUT.	Outco	ram Spo omes (P	SOs)
Course	003	Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	85.84	1	2									7.	2		2	
	CO2	84.96	2	2	3						7.72			2		2	
DEC	CO3	79.89	2	2	3					- 13				2	75	2	
	CO4	81.74	1	2	2									2		2	
	CO1	79.24	2	2	2	-								1	110	2	
	CO2	83.72	3	2	3					•				1	1	2	
PSC	CO3	85.84	3	2	2									1	1	2	
	CO4	71.48	3	2	3									1		2	Visite !
	CO5	68.42	1	1	1						10			1		2	
	COI	93.65	3	3		1								1	2		1
	CO2	91.34	2	2		1					3-19			1	2		1
RVSP	CO3	74.85	2	2		1								1	2		1
	CO4	82.35	2	3		1								1	2	LEIM	1
	CO1	80.70	3	2	1	1								2			3
	CO2	71.00	3	2	1	2								2		1 3	3
SS	CO3	70.81	3	3	1	3								2			3
	CO4	65.06	3	2	1	1								2			3
	CO5	51.43	3	3	3	3								2			3
N TOPE TO	CO1	90.51								3					-		
	CO2	92.05			1					3							
PEHV	CO3	93.64		1	2					3	2						
	CO4	81.63				1		2		3	1		EH	12.00			
	CO5	83.56						1	2	3				1	Hall		
	COI	53.80	3	3		3	3					71		11100	710	2	
	CO2	53.80	1	2		2	2							ijis (u)		1	
AEC LAB	CO3	53.80	1	1		2	2							And I	THE	1	10314
	CO4	53.80	2	1	1	3	3							Maul-	Tim	2	
	CO5	97.00								1	2	3		1			
	COI	67.00	3	3		3	3				+					2	
	CO2	62.00	2	2		3	3								136	2	
PDC LAB	CO3	68.00	3	1		3	3									2	
	CO4	73.00	2	1	1	3	3	1						BONS	- 10	2	
	CO5						4 -			1	2	3		1		1 88	
	COI		2	2										2	3	7	
	CO2		1	1										2	3		
AC	CO3		1	3										2	3		
	CO4		2	2										2	3		
	CO5		3	2					1 15					2	3		
	COI		2	3	1									2	The second	2	
	CO2	100000000000000000000000000000000000000	3	3	1									2		2	
AIC	CO3		1	2	3									2		2	
	CO4		3	2	1									1		2	
	COS		2	2	3	1								2		2	

Course	COs	CO Attainment							Out	comes					Outc	ram Sp omes (P	SOs)
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	77.99	1	1	1									1		2	
	CO2	83.33	1	2	1									2		2	
СО	CO3	87.30	1	2	3									2		2	
	CO4	88.52	2	2	2			8						2		2	
	CO5	85.49	1	1	1									1		2	
e le constitue de	CO1	79.76	1	2	1		, -							2		A BOTT	1
	CO2	81.15	1	3	2									2			2
CS	CO3	86.04	1	3	2						15	ZXII X		2			2
	CO4	87.55	1	3	2									2			2
	CO5	86.43	1	3	3		11	4						2 ·			2
16.0	CO1	72.89	3	3	1	1								2			2
	CO2	70.19	3	3	2					211				2			2
DSP	CO3	72.19	3	3	2									2			2
	CO4	65.46	3	3	3	2						TE TEL		2			3
	CO5	67.29	3	3	3	2								2			3
-	CO1	86.08	2	2	1			2						2	3		
	CO2	80.90	2	2	1			2						2	3		
EMFW	CO3	89.06	3	3	1			2				H Tes		2	3		State
	CO4	86.82	1	1	1			1	1					2	3	297	
	CO5	83.66	1	1	1					- 1				1	2		
	CO1	89.13	3	2	1	2					FIE			1			
	CO2	78.10	3	2	1	2								1		Piles	
ES	CO3	91.33	2	3	1	3								1	- 18		W.
	CO4	92.02	2	3	1	3								1			
	CO5	91.37	2	3	1	3								1			
	CO1	71.00	2	2	3	2	2									3	
	CO2	71.00	2	1	2	1	1									3	
AIC LAB	CO3	73.00	2	2	3	1	1									3	
	CO4	100.00								1	2	3		1		3	
	COI	71.00	1	1			3						T j	100		1911	3
0000	CO2	69.00	2	3		1	3										3
SSP LAB	CO3	74.00	2	2	3	2	3										3
	CO4	100.00					130			1	2	3		1			
表标作	CO1	85.50	1	1										1	2		
	CO2	84.90	1	2										2	2		
DC	CO3	90.10	1	2	2									2	3		450
	CO4	87.30	3	2	3									2	2		
	CO5	82.20	2	2	2									3	2		
	COI	77.80	1		1									1		3	
	CO2		1		2		2					13		2		3	
DSD -	CO3		3	2	2		2						15	2		3	1 12
VHDL	CO4		3	2	3		2							2		3	
	CO5		2	2	3							Fine		2		3	

Course	COs	CO Attainment					Pı	rogran	n Ou	tcome	s (POs)		II'R		gram S tcomes (
111		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	89.00	1	1	1							111		VALIT		1	
	CO2	85.00	1	1	3									1		2	
EMI	CO3	89.90	2	2								2	F	1		2	33
	CO4	88.60	1											1		2	
	CO5	84.90	2	2				7				-17		1		2	
	CO1	66.70	1					2						1		2	
	CO2	69.40	2	2	2									1		2	
MP & MC	CO3	78.00	2	2	2									1		3	
	CO4	64.60	1	2										1		2	
	CO5	72.20	2	2	3									1	Late	3	
	CO1	65.30	2	2								184		1	2		
me er -	CO2	68.30	2	3										1	2		
TSSN	CO3	75.70	1	1							PE			1	2		
	CO4	78.80	1	1								50		1	1		
0.1.1.1	CO5	74.80		2										2	3		
	CO1	73.70	2	2	3									1	3		
	CO2	27.60		2	2									1	2		
TLWG	CO3	59.20	1	3								1.6.1		1	2		Milan
	CO4	60.70	1	3										1	3	D.L.	
2	CO5	59.90	2	2	3						III A			1	3		
	CO1	77.00	1	1		2	1							1-13.91	3		
	CO2	77.00	1	1		1	2					141			3		
ADC LAB	CO3	69.00	1	1		2	1					Tu			3		
	CO4	72.00	1	1		2	1			- 1				To Base	3		
	CO5	100.00									2	3					
	CO1	68.00	1	2	1	2	2								J)r	2	
MPMC	CO2	72.00	1	1	2	2	2							Tro 17		2	
LAB	CO3	76.00	1	2	2	2	2							190		2	
	CO4	97.65									2	3		Term		RIE	
	CO1	80.70	3	2	1		2	2			2			3	3	3	3
SEMINAR	CO2	82.10	1	2	2	2	3	2			2			3	3	3	3
	CO3	72.90										3		3			
	CO4	77.84				Y IA						3		3			
	CO1	77.10	1											1	1		
	CO2	77.10	2	2	2					3				2	2		
AWP.	CO3	74.30	2	2	3									2	3		
	CO4	73.90	1	1	1									1	2		
	CO5	69.20	1	1				ef _						1	2		
	COI	67.70	1	1			1							1	TIME	2	
DCD	CO2	74.80	1	2	2		2							2		3	
DSD - VERILOG	CO3	68.10	2	2	3		2						4	2		-3	
	CO4	72.00	2	2	3		2				HIE			2	HE	3	
	CO5	60.00	2	2	3						-		94	1	- 1 1 1 1	3	Hill

Course	COs	CO Attainment					Pro	gram		omes				SEA	Oute	ram Spo omes (P	SOs)
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	94.10	3	2			2							2	1		
	CO2	77.20	3	2			2	ETR	2					2	1		
DSOOP	CO3	80.40	3	2			2							2	1	M. B.	
	CO4	77.40	3	2			2							2	1		
	CO5	75.40	3	2			2							2	1		
	CO1	75.40	1	2										1		2	
	CO2	68.20	2	2	3									1		2	
VLSID	CO3	68.90	2	2	3									2		3	
	CO4	69.40	2	2	3									2		3	
	CO5	63.30	2	2	2									1		3	
	CO1	73.30	1										955	1			1
	CO2	74.20	2	2	1									1			2
DIP	CO3	70.20	2	3	3								Nel 1	2			3
	CO4	74.80	1	1	1									1			2
	CO5	72.10	1	1	1							TIT		2			2
	CO1	73.40	1	1							100			1		1	
	CO2	69.00	1		1									1		1	
ESD	CO3	74.20	1	2	2									1		2	
	CO4	65.40	1	1	2									1		2	
	CO5	75.20	2	2	3									1		3	
	CO1	76.86	3	2			2							2	1		
	CO2	69.00	3	2			2						4	2	1		
DSOOP	CO3	71.08	3	2			2							2	1		
LAB	CO4	71.08	3	2			2							2	1		- 4
-	CO5	68.72	3	2			2					I FE		2	1		
	CO6	100.00								1	2	3		1		Ta II	
	COI	66.00		1		3		2			3			2			
	CO2	66.00		1		3		2			3			2			
CPS LAB	CO3	66.00		1		3		2		H	3			2			
CFSLAB	CO4	66.00		1		3		2			3			2			
	CO5	66.00		1		3		2			3			2		SE 7	
	CO6	100.00								1	2	3		1			
	CO1	85.94	2	3				3			1			3	3	3	3
	CO2	78.02	2	3	3	3	3	3	2					3	3	3	3
MINI	CO3	73.48	2	3	3	2	2	3	2				3	3	3	3	3
PROJECT	CO4	66.56										3		3		12/2	
	CO5	78.58								3	3			3			
	CO6	68.40										3		3			
	CO1	83.20	2							2	1			2			
	CO2	78.70					2							2			
IM	CO3	81.70												2			
	CO4	81.60								3	2			2			
	CO5	79.00				2						T.	1	2			

Course	COs	CO Attainment							m Ou	tcom	es (PO	s)		199		ogram S tcomes (
B		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3-
	CO1	72.10	1											1	1	of B	
	CO2	61.90	1	2										1	2		
MWE	CO3	73.50	1	1										1	2		
	CO4	58.70	2	2	2									1	3	312	
BIN.	CO5	49.10	1	2										1	2		
	CO1	72.00 -	1											1	2		
	CO2	70.80	1	2	1			1	1					1	2		
OC	CO3	56.10	1	2	1			1	1				Ball	1	1		MRIV
	CO4	58.40	2	3	2									1	3		
R LET	CO5	53.00	3	3	2			2	2					1	3		
	CO1	59.30	2	1	1									1	1	9	
	CO2	58.00	2	3	1									1	2	191	
CMC	CO3	65.70	1	2	3							1,00		1	3		
	CO4	59.00	1	1	1					-				1	2		
	CO5	69.00	1	1	1									1	2		
Mil.	CO1	68.00	1	2										1	2		
	CO2	53.90	2	2	3									2	3		
CN	CO3	46.80	2	2	3									2	3		
	CO4	53.70	1											1	1		
	CO5	43.40	2	2	3					1				1	3		
111,5	CO1	73.60	1	1			-							1	3	1	
	CO2	62.10	1	2	1									1			
PLD	CO3	57.70	1	2	2									2		3	
	CO4	57.70	1	3	2												
	CO5	37.70	1	2	3					-				1		2	90-1
	COI	78.00	2	2		3	2							2		3	
	CO2	72.00	1	2	3	3	3						7		F1.	3	
DSD LAB	CO3	72.00	1	2	3	2	2							- 100		2	
	CO4	93.00	1	4		- 4				1	2	2		1000	150	2	
	CO1	76.00	1	1	1	1	1			1	2	3		1		4	
	CO2	73.00	1	1	1	1	1								2		
MWOC	CO3	70.00	2	2	1	2	2		- 1						2		
MWOC LAB	CO4	70.00	2	2		2	2								3		
	CO5	71.00	1		1				_						3		
	CO6		1	1	-	1	.1								1	D _E	
		96.70	2	2	2	2		_		1	2	3		1			
	CO1	72.20	3	3	2	3		2	2	- 11	3			3	3	3	3
NTERSHIP	CO2	78.40	3	3	3	3	3	2			3			3	3	3	3
	CO3	81.70								Variable	3	3		3			2011
	CO4	66.10					1			3	3	3		3		MATE	
	CO1	64.40	1	1						4				1	2		
	CO2	63.50	1	2	19				- 1					1	1	178 1	het
RS	CO3	57.50	1	2										1	2		tiple st
	CO4	53.10	1	2										1	2		
	CO5	51.50	1	2									E	1	2		

Course	COs	CO Attainment					Progr	am Oı	itcom	es (PO	s)			-515	Prog Outc	ram Sp omes (F	ecific PSOs)
		Value (%)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	62.40	1	2										1	1		
	CO2	44.30	1	2	1						- 40			1	2		
SC	CO3	39.30	2	2	1									1	3		
	CO4	53.50	1	2										1	2		
	CO5	81.90	1	The same										1	2		
	COI	52.50	1	1				ATT N					The state of	1		1	
	CO2	80.20	1	1	1111		2							1		2	
AE	CO3	54.10	1	2	1		1		Sept.					1		2	
	CO4	81.90	1	1				i izgli		N.B				1		1	
	CO5	84.60	1	1				-54						1		1	
	CO1	37.90	2	1	3		2	1					1	1	2	3	2
	CO2	23.50	2	1	3		2	1					-	1	2	3	2
WT	CO3	37.30	2	2	3		2	1						1	2	3	2
	CO4	32.50	2	2	3		2	1						1	2	3	2
	CO5	41.40	2	2	3		2	1						1	2	3	2
9	CO1	69.30	2	3				3						3	3	3	3
	CO2	68.90	2	3	3	3	3	3	2	72.1		171014	Side	3	3	3	3
MAIN	CO3	63.80	2	3	3	2	2	3	2		111		3	3	3	3	3
PROJECT	CO4	62.06										3		3			
	CO5	74.25								3	3		7.9	3			
	CO6	60.38										3		3		= 1	
	CO1	76.90	3	3	3			THE	181	TOTAL	linte.	Teleli	p. m	2	3	3	3
CVV	CO2	72.64									3	3		2			
Direct	Attainn	ient (%)	72. 00	71 .60	70. 12	70. 83	67. 67	68. 74	71. 78	81. 20	77. 71	80. 99	68. 96	73. 04	68. 46	70. 67	70. 12

Indirect Attainment (2016 Batch):

1. Exit Survey (2016 Batch):

POs/PSOs	Excellent (4)	Very Good (3)	Good (2)	Poor (1)	Total No of Students Participated	Attainment Value
PO1	52	92	63	1	208	73.44
PO2	54	85	66	3	208	72.84
PO3	50	77	75	6	208	70.55
PO4	46	82	78	2	208	70.67
PO5	50	76	77	5	208	70.55
PO6	56	88	63	1	208	73.92
PO7	59	85	60	4	208	73.92
PO8	62	88	57	1	208	75.36
PO9	63	94	51	0	208	76.44
PO10	69	89	50	0	208	77.28
PO11	63	82	59	4	208	74.52
PO12	59	83	65	1	208	74.04
PSO1	56	89	60	3	208	73.80
PSO2	46	88	70	4	208	71.15
PSO3	51	84	73	0	208	72.36

2. Student Portfolios (2016 Batch):

2.1. Co-curricular Details:

Component	No. of studer	nts	Total No. of Final Year Students	%	Weightage	Attainment (%)
Workshops	Participated	123	. 212	58.02	0.2	11.7
Certification	Participated	93	212	43.87	0.05	2.2
Programs	Certified	93	212	43.87	0.15	6.6
NPTEL	Successfully Completed	146	212	68.87	0.1	6.9
THE REAL	(ELITE+GOLD) + ELITE	18	212	8.5	0.05	0.5
Technical Fest (Paper Presentation, Poster Presentation, Quiz, Project Expo,	Participated	98	212	46.23	0.2	9.3
etc.)	Awards	14	212	6.61	0.1	0.7
Journal Publications	Involved	204	212	96.23	0.1	
Industrial Visit	Participated	173	212	81.61	0.05	9.7
	Attainmen			01.01	0.03	4.1 51.7

2.2. Extra-curricular Details (2016 Batch):

Component	No	o. of students		Total No. of Final Year Students	%	Weightage	Attainment (%)
		State Level	0	212	0	0.05	0
	Participated	International/ National Level	0	212	0	0.1	0
Sports &		University & Institute Level	149	212	70.29	0.1	7.1
Games		State Level	0	212	0	0.1	0
	Awards	International/ National Level	0	212	0	0.2	0
		University & Institute Level	53	212	25	0.05	1.3
Yoga	Participated		20	212	9.44	0.1	1
Tuga	Awards		20	212	9.44	0.1	1
Cultural	Participated		60	212	28.31	0.1	2.9
Activities	Awards .		1	212	0.48	0.1	0.1
		Attainmen	t (%)		//		13.4

2.3. Extension Activities (NSS, NCC) Details (2016 Batch):

Component	No. o	of students		Total No. of Final Year Students	%	Weightage	Attainment (%)
		Adopted Villages	7	212	3.31	0.2	0.7
NSS	Participated	Institute Level /Local Community	121	212	57.08	0.3	17.2
	Awa	rds		26	212	12.27	0.2
	Partic	ipated		30	94	31.92	0.1
NCC	Awa ('B' & 'C' o			29	94	30.86	0.2
		Attainme	nt (%	6)			29.8

2.4. Placements & Higher Studies Details (2016 Batch):

Component	No. of stud	lents	Total No. of Final Year Students	%	Weightage	Attainment (%)
Placement	Placed	141	212	66.51	0.8	53.3
Higher Studies	Qualified in Competitive Examinations	09	212	4.25	0.2	0.9
OA	314	Attain	ment (%)			54.2

Student Portfolio Attainment:

	Component	% Attainment	Program Outcomes (%)				Program Specific Outcomes (%)										
			1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C	OCURRICULAR ACTIVITIES	51.7	3	3	3	2	2	2	2	3	3	1	1	3	3	3	3
	EXTRA CURRICULAR ACTIVITIES	13.4								3	3					13.28	11111
T	NSS and NCC	29.8							3	3	3				172		
	PLACEMENT &HIGHER STUDIES	54.2	3	3	3	3	3		-		3	3		3	3	3	3
-	% Pos and PSOs A	ttainment	52.95	52.95	52.95	53.20	53.20	51.70	38.56	31.63	37.28	53.58	51.70	52.95	52.95	52.95	52.95

The Following Table depicts the POs & PSOs Indirect Attainment.

Assessment		rid			Prog	ram O	utcom	es (%)			Till		Program Specific Outcomes (%)		
Tool	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Program Exit Survey (%)	73.44	72.84	70.55	70.67	70.55	73.92	73.92	75.36	76.44	77.28	74.52	74.04	73.80	71.15	72.36
Portfolio Component (%)	52.95	52.95	52.95	53.20	53.20	51.70	38.56	31.63	37.28	53.58	51.70	52.95	52.95	52.95	52.95
Indirect Attainment (%)	17.93	17.87	17.65	i7.71	17.70	17.73	15.10	13.86	15.10	18.44	17.79	17.99	17.97	17.71	17.83

The overall attainment of the 2016-20 batch is depicted in the following table

Assessment Tool		Program Outcomes (%)										Program Specific Outcomes (%)			
100T 90T	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Target (%)	66.00	66.00	65.00	66.00	67.00	64.00	64.00	64.00	66.00	67.00			C7 00	CM 00	C# 04
Direct Attainment (%)						- Hotel				80.99	-81		68.46	A 17	
Indirect Attainment (%)	17.93	17.87	17.65	17.71	17.70	17.73	15.10	13.86	15.10	18.44	17.79	17.99	17.97	17.71	17.83
PO	68.33	67.99	66.73	67.29	65.06	65.85	65.35	70.7	69.5	75.14	66.06	69.12	65.89	67.17	66.91

Date: 14.12.2020

HEAD

Department of Electronics & Communication Engineering Lakireddy Bali Reddy College of Engineering
WYLAVARAM, Krishna Dt., Andhra Prades

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

Department of ECE

PO / PSO	2014 Batch	2015 Batch	2016 Batch
PO1:Engineering knowledge	68.77	70.96	68.33
PO2:Problem analysis	68.6	71.31	67.99
PO3:Design/development of solutions	67.83	70.13	66.73
PO4:Conduct investigations of complex problems	68.27	69.08	67.29
PO5:Modern tool usage	64.93	67.28	65.06
PO6:The engineer and society	67.46	69.82	65.85
PO7:Environment and sustainability	66.81	73.27	65.35
PO8:Ethics	74.99	74.45	70.7
PO9:Individual and team work	70.87	70.44	69.5
PO9:Communication	72.62	73.3	75.14
PO10:Project management and finance	69.59	67.78	66.06
PO11:Life-long learning	70.44	71.79	69.12
PSO1: Communications	70.37	74.35	65.89
PSO2: VLSI & Embedded Systems	65.49	70.28	67.17
PSO3: Signal Processing	70.51	73.43	66.91

Date: 14 /12/2020

Department of Electronics & Communication Engineering Lakireddy Bali Reddy College of Engineering MYLAVARAM, Krishna Dt., Andhra Pradesh

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi), L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

Dt:16.12.2020

Department of Electronics & Communication Engineering

POs& PSOs Attainment Levels for 2016 Admitted Batch and Actions Taken for improvement

66	68.33	1. Out of 69 courses, 62 courses are contributing to PO1. Among these 69 courses contribution by 10 courses is less. 2. Contribution through indirect attainment is bit lagging
fining the e		
for test ite	experiments with more	h quality objectives. knowledge based questions.
arget	Attained	Observation
66	67.99	63 out of 69 courses are contributing for PO2. Lesser values of CO attainments are observed for 12 courses. Contribution through indirect attainment is slightly low.
	66 ponds to a	Lucia de la compansión

PO	Target	Attained	Observation
PO3: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	65	66.73	1. The number of course mapped to this PO is 54. Eleven courses have not reached the desired attainment level.

Action1: It was observed that attainment values that are less in theory courses corresponds to application oriented courses and thus can be enhanced by organizing guest lectures, symposiums in the relevant domain.

Action2: To strengthen the portfolio components students need to be encouraged to undergo certification programs, participate in workshops, hackthon etc.

Action3: The attainment in the courses that are more mathematics based can be improved by practicing more problems as well as giving assignments involving derivative questions.

PO	Target	Attained	Observation
PO4: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	66	67.29	1. Two out of 27 courses that are correlated to this PO have not got significant attainment values.

Action 1: The attainment in the laboratory courses can be further improved by redefining the experiments with quality objectives.

Action 2: To strengthen the portfolio components students need to be encouraged to undergo certification programs, participate in workshops, backthon etc.

PO	Target	Attained	Observation
PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.	67	65.06	Out of 24 courses that are contributing to PO5, three got less attainment.

Action1: It was observed that attainment in web technologies is very less and can be strengthened by conducting more practical sessions involving more real time problems.

Action 2: The attainment in the laboratory courses can be further improved by redefining the experiments with quality objectives.

Action 3: To strengthen the portfolio components students need to be encouraged to undergo certification programs, participate in workshops, hackthon etc.

PO	Target	Attained	Observation
PO6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	64	65.85	Out of 13 courses that are contributing to PO6, two got less attainment.

Action1: The usages of ICT tool are suggested for theoretical courses.

Action2: Students are encouraged to participate in co curricular activities.

Action2. Students are encouraged to participate in co curredian activities.			
PO	Target	Attained	Observation
PO7: Understand the impact of the professional engineering solutions in	64	65.35	Out of 7 courses that are

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development			contributing to PO6, one got less attainment. Contribution through extension activity is lagging
Action1: The usages of ICT tool are suggested for theoretical courses. Action2: The students will be encouraged to participate in activities that con-	tribute to the soc	ciety like NCC a	nd NSS.
PO	Target	Attained	Observation
PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice	64	70.7	Out of 15 courses that are contributing to PO7, one got less attainment. Contribution through extension activity is lagging
Action1: The usages of ICT tool are suggested for theoretical courses Action2: Student should be more encouraged towards participation in portfol			
PO Po di Maria di Man	Target	Attained	Observation
PO9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	66	69.5	Contribution of one laboratory course is slightly low.
Action1: The faculty of the laboratory courses was advised to conduct more Action2: Student should be more encouraged towards participation in extract activities.			activities, and NCC & NSS
PO	Target	Attained	Observation -
PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	67	75.14	Contribution of one laboratory course is slightly low.
Action1: Further improvement can be achieved by upgrading the student's kr Action2: Student should be more encouraged towards participation in co- cur			ing.
	m .	Attained	Observation
PO	Target		

Action1: Student should be more encouraged towards participation in co-curricular activities

PO	Target	Attained	Observation
PO12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	64	69.12	24 out of 69 courses that are mapped to this PO. 9courses bit lagging in the attainment level.
Alternation (Observed Control of the			Contribution by co- curricular activities is slightly low.

Action1: The theory course attainments can be enhanced by preparing the students for test items with more knowledge based questions.

Action2: The attainment in the courses that are more mathematics based can be improved by practicing more problems as well as giving assignments involving derivative questions.

Action3: The faculty of the laboratory courses was advised to conduct more demonstration classes.

Action4: Student should be more encouraged towards participation in co-curricular activities

PSO	Target	Attained	Observation
PSO1: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.	67	65.89	1. Out of 69 courses, 28 courses are mapped to this PSO. Only for 5 courses the attainment levels are away from the targets. 2. Contribution by indirect attainment is slightly low.

Action1: It was observed that attainment values that are less in theory courses corresponds to application oriented courses and thus can be enhanced by organizing guest lectures, symposiums in the relevant domain.

Action 2:: The attainment in the courses that are more mathematics based can be improved by practicing more problems as well as giving assignments involving derivative questions

Action 3: Student should be more encouraged towards participation in co-curricular activities

PSO	Target	Attained	Observation
PSO2: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools	67	67.17	12 courses are mapped to this PO among 69 courses. Only for 5 courses the attainment levels are away from the targets.

			Contribution by indirect attainment is slightly low.
Action1: The attainment in the laboratory courses can be further improved by a Action2: Application oriented concepts can emphasize with help of examples a	7.5	xperiments wit	h quality objectives
PSO	Target	Attained	Observation
PSO3: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.	hanladh	Classica de	12 courses are mapped to this PO among 69 courses. Only for one courses the attainment levels are away from the
	65	66.91	targets. Contribution by indirect attainment is slightly low.

Action1: It was observed that attainment in web technologies is very less and can be strengthened by conducting more practical sessions involving more real time problems

Action2: Students will be motivated to undergo certification programs in relevant domain.

Head of the Department

Department of Electronics & Communication Engineering
Lakireddy Bali Reddy College of Engineering
WYLAVARAM, Krishna Dt., Andhra Pradesh